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Course Companion denition
The IB Diploma Programme Course Companions are 

resource materials designed to support students 

throughout their two-year Diploma Programme course 

of  study in a particular subject. They will help students 

gain an understanding of  what is expected from the 

study of  an IB Diploma Programme subject while 

presenting content in a way that illustrates the purpose 

and aims of  the IB. They reect the philosophy and 

approach of  the IB and encourage a deep understanding 

of  each subject by making connections to wider issues 

and providing opportunities for critical thinking.

The books mirror the IB philosophy of  viewing the 

curriculum in terms of  a whole-course approach; the 

use of  a wide range of  resources, international 

mindedness, the IB learner prole and the IB

Diploma Programme core requirements, theory of  

knowledge, the extended essay, and creativity, action, 

service (CAS).

Each book can be used in conjunction with other 

materials and indeed, students of  the IB are required 

and encouraged to draw conclusions from a variety of  

resources. Suggestions for additional and further 

reading are given in each book and suggestions for how 

to extend research are provided.

In addition, the Course Companions provide advice and 

guidance on the specic course assessment requirements 

and on academic honesty protocol. They are distinctive 

and authoritative without being prescriptive.

IB mission statement
The International Baccalaureate aims to develop 

inquiring, knowledgable and caring young people who 

help to create a better and more peaceful world through 

intercultural understanding and respect.

To this end the IB works with schools, governments 

and international organizations to develop challenging 

programmes of  international education and rigorous 

assessment.

These programmes encourage students across the 

world to become active, compassionate, and lifelong 

learners who understand that other people, with their 

dierences, can also be right.

The IB learner Prole
The aim of  all IB programmes is to develop 

internationally minded people who, recognizing their 

common humanity and shared guardianship of  the 

planet, help to create a better and more peaceful world. 

IB learners strive to be:

Inquirers They develop their natural curiosity. They 

acquire the skills necessary to conduct inquiry and 

research and show independence in learning. They 

actively enjoy learning and this love of  learning will be 

sustained throughout their lives.

Knowledgable They explore concepts, ideas, and 

issues that have local and global signicance. In so 

doing, they acquire in-depth knowledge and develop 

understanding across a broad and balanced range of  

disciplines.

Thinkers They exercise initiative in applying thinking 

skills critically and creatively to recognize and 

approach complex problems, and make reasoned, 

ethical decisions.

Communicators They understand and express ideas 

and information condently and creatively in more 

than one language and in a variety of  modes of  

communication. They work eectively and willingly in 

collaboration with others.

Principled They act with integrity and honesty, with a 

strong sense of  fairness, justice, and respect for the 

dignity of  the individual, groups, and communities. 

They take responsibility for their own actions and the 

consequences that accompany them.

Open-minded They understand and appreciate their 

own cultures and personal histories, and are open to 

the perspectives, values, and traditions of  other 

individuals and communities. They are accustomed to 

seeking and evaluating a range of  points of  view, and 

are willing to grow from the experience.

Caring They show empathy, compassion, and respect 

towards the needs and feelings of  others. They have a 

personal commitment to service, and act to make a 

positive dierence to the lives of  others and to the 

environment.

Risk-takers They approach unfamiliar situations and 

uncertainty with courage and forethought, and have 

the independence of  spirit to explore new roles, ideas, 

and strategies. They are brave and articulate in 

defending their beliefs.

Balanced They understand the importance of  

intellectual, physical, and emotional balance to achieve 

personal well-being for themselves and others.

Reective They give thoughtful consideration to their 

own learning and experience. They are able to assess 

and understand their strengths and limitations in order 

to support their learning and personal development.
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A note of academic honesty
It is of  vital importance to acknowledge and 

appropriately credit the owners of  information 

when that information is used in your work. After 

all, owners of  ideas (intellectual property) have 

property rights. To have an authentic piece of  

work, it must be based on your individual and 

original ideas with the work of  others fully 

acknowledged. Therefore, all assignments, written 

or oral, completed for assessment must use your 

own language and expression. Where sources are 

used or referred to, whether in the form of  direct 

quotation or paraphrase, such sources must be 

appropriately acknowledged.

How do I acknowledge the work 
of others?
The way that you acknowledge that you have 

used the ideas of  other people is through the use 

of  footnotes and bibliographies.

Footnotes (placed at the bottom of  a page) or 

endnotes (placed at the end of  a document) are to 

be provided when you quote or paraphrase from 

another document, or closely summarize the 

information provided in another document. You 

do not need to provide a footnote for information 

that is part of  a ‘body of  knowledge’. That is, 

denitions do not need to be footnoted as they 

are part of  the assumed knowledge.

Bibliographies should include a formal list of  

the resources that you used in your work. 

‘Formal’ means that you should use one of  the 

several accepted forms of  presentation. This 

usually involves separating the resources that you 

use into dierent categories (e.g. books, 

magazines, newspaper articles, Internet-based 

resources, CDs and works of  art) and providing 

full information as to how a reader or viewer  

of  your work can nd the same information.  

A bibliography  is compulsory in the extended  

essay.

What constitutes malpractice?
Malpractice is behaviour that results in, or may 

result in, you or any student gaining an unfair 

advantage in one or more assessment component. 

Malpractice includes plagiarism and collusion.

Plagiarism is dened as the representation of  the 

ideas or work of  another person as your own. 

The following are some of  the ways to avoid 

plagiarism:

● Words and ideas of  another person used to 

support one’s arguments must be 

acknowledged.

● Passages that are quoted verbatim must be 

enclosed within quotation marks and 

acknowledged.

● CD-ROMs, email messages, web sites on the 

Internet, and any other electronic media must 

be treated in the same way as books and 

journals.

● The sources of  all photographs, maps, 

illustrations, computer programs, data, graphs, 

audio-visual, and similar material must be 

acknowledged if  they are not your own work.

● Words of  art, whether music, lm, dance, 

theatre arts, or visual arts, and where the 

creative use of  a part of  a work takes place, 

must be acknowledged.

Collusion is dened as supporting malpractice by 

another student. This includes:

● allowing your work to be copied or submitted 

for assessment by another student

● duplicating work for dierent assessment 

components and/or diploma requirements.

Other forms of malpractice include any action 

that gives you an unfair advantage or aects the 

results of  another student. Examples include, 

taking unauthorized material into an examination 

room, misconduct during an examination, and 

falsifying a CAS record.
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About the book
The new syllabus for Mathematics Higher Level 

Option: Statistics is thoroughly covered in this 

book. Each chapter is divided into lesson-size 

sections with the following features:

Did you know? History

Extension Advice

The Course Companion will guide you through 

the latest curriculum with full coverage of  all 

topics and the new internal assessment. The 

emphasis is placed on the development and 

improved understanding of  mathematical 

concepts and their real life application as well as 

prociency in problem solving and critical 

thinking. The Course Companion denotes 

questions that would be suitable for examination 

practice and those where a GDC may be used. 

Questions are designed to increase in diculty, 

strengthen analytical skills and build condence 

through understanding. 

Where appropriate the solutions to examples are 

given in the style of  a graphics display calculator. 

Mathematics education is a growing, ever 

changing entity. The contextual, technology 

integrated approach enables students to become 

adaptable, lifelong learners.

Note: US spelling has been used, with IB style for 

mathematical terms.

About the authors
Josip Harcet has been teaching the IB programme 

for 20 years. After teaching for 11 years at 

dierent international schools he returned to 

teach in Zagreb. He has served as a curriculum 

review member, deputy chief  examiner for 

Further Mathematics, assistant and senior 

examiner, as well as a workshop leader.

Lorraine Heinrichs has been teaching IB 

mathematics for the past 12 years at Bonn 

International School. She has been the IB DP 

coordinator since 2002. During this time she has 

also been senior moderator for HL Internal 

Assessment and workshop leader of  the IB, she 

was also a member of  the curriculum review team.

Palmira Mariz Seiler has been teaching 

mathematics for 22 years. She joined the IB 

community 11 years ago and since then has 

worked as Internal Assessment moderator, in 

curriculum review working groups, and as a 

workshop leader and deputy chief  examiner for 

HL mathematics.

Marlene Torres-Skoumal has taught IB 

mathematics for over 30 years. During this time, 

she has enjoyed various roles with the IB, 

including deputy chief  examiner for HL, senior 

moderator for Internal Assessment, calculator 

forum moderator, workshop leader, and a 

member of  several curriculum review teams.
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Exploring further probability distributions2

Exploring  
further 
probability 
distributions

CHAPTER OBJECTIVES:

7.1 Cumulative distribution functions for both discrete and continuous distributions.

Geometric distribution. Negative binomial (Pascal’s) distribution.

Probability generating functions for discrete random variables.

Using probability generating functions to nd the mean, variance, and  

distribution of the sum of n independent random variables.

Before you start

1 Find the mode, median, mean, and 

standard deviation of  a discrete random 

variable, e.g. the table shows the probability 

distribution of  a discrete random variable X

X = x
i

 2 3 4

P(X = x
i
) 0.3 0.25 0.35 0.

Mode (X ) = 3, because P(X = 3) = 0.35,  

which is the highest probability of  the  

four random variables.

Median, m = 2 since

P P( ) . ( ) .X X≤ = ≤ =1 0 3 2 0 55and

= =
=

∑E( )X x pi i

i 1

4

= × + × + × + × =1 0 3 2 0 25 3 0 35 4 0 1 2 25. . . . .

σ μ= = −
=

∑Var( )X x pi i

i

2 2

1

4

2 2 2 2 21 (0.3) 2 (0.25) 3 (0.35) 4 (0.1) 0.225= + + + −

= − =6 05 2 25 0 994
2

. . .

1 Find the mode, median, mean and  

standard deviation of  the following  

discrete random variables given by:

a
x

i − 0  2 3 4

p
i 0.3 0. 0.3 0. 0.05 0.5

b P( )
, , , ,

,

X x
x

x

= =
=

⎧

⎨
⎪

⎩⎪

5

10
1 2 3 4

0 otherwise

1



Chapter 1 3

2 Find the mode, median, mean and  

standard deviation of  a continuous  

random variable, e.g. the probability density 

function of  a discrete random variable X is 

given by the formula

f x
x x

( )
,

,

=
≤ ≤

⎧

⎨
⎪

⎩⎪

1

2
0 2

0 elsewhere

Mode (X ) = 2 because it has the maximum 

point at the end of  the interval.

Median, 
0

m

∫ f x dx m
m

( ) = ⇒ = ⇒ =
1

2 4

1

2

2

2

μ = E(X ) = 
0

2

∫xf (x)dx = 
0

2

∫
1

2

4

3

2
x dx =

= ( ) = −∫Var X x f x2

0

2

2( )

1

2

4

3

16

9

2

3

3

0

2 2

2x dx∫ − = − =⎛

⎝
⎜

⎞

⎠
⎟

3 Find the sum of  an innite geometric  

series by using the formula 

u u u r
u

r
1 2 3

1

1
0 1+ + + = < <... ,

e.g. the series

9

2

4

3

9

2

1
2

3

27

2
3 2+ + + + = =...

4 Dierentiate and integrate composite 

functions, e.g.

3

2 3

4(3 4 )
( ) ,

x
f x x= ≠

⇒ = =
× − × −

− −
f x

x x
′( )

( ) ( )

( ) ( )

2 3 4

3 4

24

3 44 4

3

2

(3 4 )
( )

x
f x =

⇒
2

3 4

1

4 3 43 2( ) ( )− −

= +

x x
dx c

2 Find the mode, median, mean and 

standard deviation of  the continuous 

random variables dened by the given 

probability density function:

a

⎧
≤ ≤⎪

⎨
⎪⎩

=
23 3
, 0 2

( ) 4 16

0, elsewhere

x x
f x

b
( )cos 2 ,

4 4

0, elsewhere

( )
x x

f x

π π⎧
⎪ ≤ ≤
⎨
⎪⎩

=

c

⎧
⎪
⎨
⎪⎩

≤ ≤
= 2

6

0, elsewhere

, 3 6
( ) x

x
f x

3 Find the sum of  the following innite 

geometric series:

a 1 − 0.5 + 0.25 − 0.125 + … 

b 2 1
2

2

1

2
   ...

4 Dierentiate and integrate the following 

composite functions:

a
1

2
( ) , 2

x
f x x= ≠

b f x e x( ) = 3 1

c f x
x

( ) sin=
−3

2

2

3

π

d f x x( ) ( )= −
2 22
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Probability as a tool to make informed decisions

A probability distribution is a mathematical model that shows the 

possible outcomes of  a particular event or course of  action as well 

as the statistical likelihood of  each event. For example, a large 

company might use statistical techniques to create scenario 

analyses. A scenario analysis uses probability distributions to 

produce several theoretically distinct possibilities for the outcome of  

a particular course of  action or future event. For example, a business 

might create three scenarios: worst-case, likely, and best-case. The 

worst-case scenario would contain a value from the lower end of  the 

probability distribution; the likely scenario would contain a value 

towards the middle of  the distribution; and the best-case scenario 

would contain a value in the upper end of  the distribution.

Although it is impossible to predict the precise value of  a future 

sales level, businesses still need to be able to plan for future events. 

Using a scenario analysis based on a probability distribution can 

help a company frame its possible future values in terms of  a likely 

sales level and a worst-case and best-case scenario. By doing so, the 

company can base its business plans on the likely scenario but still 

be aware of  the alternative possibilities.

In the last few 

decades, 

Probability and 

Statistics have 

become very 

important due to their 

wide-ranging 

applications. 

Statistics literacy is 

essential not only for 

business and 

economics 

professionals but 

also, for example, 

people involved in pro 

sports. Team coaches 

often use statistics to 

decide which players 

are doing well and 

then try to predict 

which players will 

bring the best results 

for the game.
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All the probability models that we study in this book are part of the 

Actuarial science syllabus that many universities offer as undergraduate 

or postgraduate studies. Actuarial science combines knowledge from many 

different subjects like mathematics, nance, economics, and computer 

programming. It uses statistical and mathematical methods in insurance, 

health care and nance business models. Working as an actuary has 

become one of the most popular jobs in recent times. In the late 17th 

century there was an advance in research which better established 

probability distributions. Actuarial science immediately used these new 

theories to better formalize elds such as Life insurance and Annuities. 

British mathematician James Dodson (1705–1757), who was a student of 

Abraham de Moivre (1667–1754), was one of the pioneers in Actuarial 

science. Dodson worked as a teacher and an accountant. He modied 

statistical mortality tables developed earlier by Edmund Halley (1656–1742), 

and also formed a society offering the public a more equitable life 

assurance. His plan was put in practice by The Equitable Life, a well-known 

life insurance company established by a group of mathematicians in 1762.

1.1 Cumulative distribution function

You have studied probability distributions as part of  the higher level  

core course. Before exploring this topic further, it is important that  

you revise this part of  the core material, particularly if  you feel that you 

cannot recall the terminology used in this chapter.

Discrete and continuous quantities

The data that we collect can be described as quantitative or qualitative

Quantitative data can be represented by random variables and classied 

into two categories: discrete and continuous. Discrete random variables 

take exact values from the given nite or countable set, whilst the values 

of  a continuous random variable cannot be listed since they come from an 

uncountable set, usually in a form of an interval.

A discrete random variable obtained from a nite set of  values 

x x x x n
n1 2 3

, , ,..., ,{ } ∈ +
  has a probability distribution function usually given 

by a table of  values, listing the values that the variable can take along 

with their corresponding probabilities.

x


x
2

x
3

x
4

... x
n

p


p
2

p
3

p
4

... p
n

Sometimes we assign a formula or rule for calculating probabilities. 

This is usually when we have an innite, countable set of  values, 

x x x x X x p p nn n n1 2 3, , , ..., , ... , ( ) ( )= = =P , where p
n
 is calculated in 

terms of  n.
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In both cases the following properties must hold:

i 0 ≤ p
i
 ≤ ;

ii ∑p
i
 = .

A continuous random variable obtained from an uncountable set of  

values, usually written in the form of  an interval of  real numbers, 

[ , ], , ,a b a b a b< ∈, has a probability distribution function given by the 

formula 
( ),

( )
0, elsewhere

pf x a x b
f x

≤ ≤⎧
= ⎨
⎩

The probability density function must satisfy the following 

properties:

i f (x) ≥ 0 for all the values of  x ;

ii

−∞

+∞

∫ f (x) = .

A cumulative distribution function is the sum of  all the probabilities 

of  a random variable up to and including the given value of  the 

variable X. In the core course we dened a cumulative distribution 

function (CDF) of  a discrete random variable and used a graphical 

calculator with CDF features to calculate properties of  some discrete 

probability distributions. 

In this chapter we are going to further explore some discrete variables, 

and study new theoretical discrete probability distributions. We are 

going to focus on the study of  continuous probability distributions.

Even though there is a dierence between how we apply the CDF to 

discrete and to continuous variables, there are also some common 

properties of  the cumulative distribution function that we will look 

at which are irrespective of  the nature of  the variable.

Denition

Given the random variable X (discrete or continuous) and the 

corresponding probability distribution function P : [ , ] → 0 1 , the 

cumulative probability function F : [ , ] → 0 1  is F x X x( ) ( )= ≤P

This cumulative probability function has the properties:

i F (x) ∈[0, ] ; i.e. the range of  F is [0, ]

ii lim ( )
x

F x
→−∞

= 0

iii lim ( )
x

F x
→+∞

= 1

iv F (x) is nondecreasing on the whole domain; i.e. 

x x F x F x1 2 1 2< ⇒ ≤( ) ( )

The word cumulative

means ‘increasing in 

quantity by successive 

addition’.
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Example 

Prove the cumulative distribution function has the following properties:

a < ⇒ < = −≤1 2 1 2 2 1P( ) ( ) ( )x x x X x F x F x ,

b P( ) 1 ( )X x F x> = −

a P P( ) ( ) \ ( )x X x X x X x

B A

1 2 2 1< ≤ = ≤ ≤( )     

= ≤ ≤P P( ) ( )X x X x2 1

= −F x F x( ) ( )2 1

b P P( ) lim ( )X x x X b
b

> = < ≤
→+∞

= ≤ ≤
→+∞

lim ( ) ( )
b

X b X xP P

( ) ( ) ( )
→+∞

= − = −lim 1
b

F b F x F x

Set A is a subset of  set B so the probability 

of  the dierence of  these two sets is the 

dierence of  the probabilities.

Use the denition of  the cumulative 

distribution function.

Rewrite the given set. 

Use the result from part a.

Use property iii at the bottom of  page 6.

In the case of  a discrete variable, the cumulative distribution function 

can be found by simply adding up the values in the table instead of  

trying to nd a generating formula. Just a few discrete variables will 

have a simple formula; most other formulas are beyond the scope of  

this book. Therefore we are going to use a table of  values for nding 

the cumulative distribution function for discrete random variables.

Example 

The probability density function of  a random variable X is given by the formula:

P( )
, , ,

,

X x
x

x k

= =
=

+⎧

⎨
⎪

⎩⎪
9

1 2 3

0 otherwise

a Find the value of  k

b Hence determine the cumulative distribution function.

a P( )X x

x

= = ⇒
=

∑
1

3

1

1

9

2

9

3

9

6 3

9
1 1

+ + + +
+ + = ⇒ =

k k k k

k = 

b P( ) , , ,X x x
x

= = =
1

9
1 2 3

X = x  2 3

P(X = x)
2

9

3

9

4

9

F (x)
2

9

5

9

9

9
1=

The sum of  all probabilities must be equal to 1.

Solve the equation and nd the value of  k.

Use the result from part a and calculate the values 

of  the probability density function for x = 1, 2, 3.

Then use the denition of  the cumulative 

distribution function and add up all the 

previous probabilities.
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Example 

The cumulative distribution function of  a random variable X is given by  

the table below:

X = x  2 3 4

F (x)
1

10

3

10

3

5


Determine the formula of  the probability density function.

( )= = =
1

( )
10

P 1 1X F

( ) ( )= = − = − =
3 1 2

( )
10 10 10

P 2 2 1X F F

( ) ( )= = − = − =
3 3 3

( )
5 10 10

P 3 3 2X F F

( ) ( )= = − = − = =
3 2 4

( )
5 5 10

P 4 4 3 1X F F

⎧
⎪
⎨
⎪⎩

=
=( ) 10

, 1, 2, 3, 4

0, otherwise

x
x

f x

Use the result from Example 1 to nd all the 

probabilities.

Look at the repeating pattern and deduce a 

rule for the values 1, 2, 3, 4.

For continuous random variables the probability density function  

f and the cumulative distribution function F are related as follows:

F ′ (x) = f (x) ⇔ F (x) = 
−∞
∫
x

f (t)dt

The following examples show how to use this relationship and  

the properties of  the cumulative distribution function to solve  

problems involving continuous random variables.

Even though the 

lower boundary of the 

integral is −∞, in most 

of the integrals for 

the left boundary we 

are going to use the 

left boundary of the 

interval of the variable 

x for which f(x) is not 

equal to zero.
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Example 

A continuous random variable X has a probability density function given by

(2 ), [0, 2]
( )

0, otherwise

ax x x
f x

− ∈⎧
= ⎨
⎩

a Find the value of  a

b Hence determine the cumulative distribution function.

c Find the modal value of  the random variable X

a
0

2

∫ax x dx a2 1( ) = ⇒
0

2

∫ 2 1
2

x x dx( ) =

a x a
x2 2

3

0

2
3

3

2

3
1 2 0 1− = ⇒ − − =

⎡

⎣
⎢

⎤

⎦
⎥

⎛

⎝
⎜

⎞

⎠
⎟

⇒ = ⇒ =
4

3

3

4
1a a

b F (x) = ∫
0

x

f (t)dt

F (x) = ∫
0

x

23 3

2 4
t t dt

⎛ ⎞
⎜ ⎟
⎝ ⎠

3
23

,
4 4

0, 0

( ) 0 2

1, 2

x

x

F x x x

x

⎧
⎪
⎪
⎨
⎪
⎪⎩

<

= − ≤ ≤

>

c 23 3 3 3

2 4 2 2
( ) ( )f x x x f x x= − ⇒ ′ = −

3

2

3

2
0 1− = ⇒ =x x

Scratchpad 

0
0.5

0.25

0.5

0.75

1.0

y

1

(1, 0.75)

f1(x x
3

2
x
23

4

1.5 2
x

2.5

The denite integral on the interval [0, 2] must 

be equal to 1.

Solve the equation and nd the value of  a.

Use the relationship between probability 

density and cumulative distribution functions.

Use the result from part a and the properties of  

the cumulative distribution function and nd 

the formula.

The modal value is the value for which the 

probability density function reaches an absolute 

maximum value.

The modal value of  the variable X is 1.
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Example 

A continuous random variable X has a cumulative distribution function, F (x), given by:

4 3 2

0, 0

( ) 4 4 , 0

1,

x

F x x x x x b

x b

<⎧
⎪

= − + ≤ ≤⎨
⎪ >⎩

a Find the value of  b

b Hence determine the probability density function.

c Find the median value of  the random variable X

a b b b
4 3 2

4 4 1− + =

⇒ − − =( )b b
2 22 1 0

⇒ − − − + =( ) ( )b b b b
2 22 1 2 1 0

b b b1 2 3 41 2 1 2 1= − = + =, ,

Scratchpad 

0
0.5

0.5

1

1.5

2

y

1

(1, 1) (2.41, 0.971)

1.5 2
x

2.5

f1(x)=x
4–4·x3+4·x2

b ( ) ( )f x F x= ′

3 24 12 8 , [0,1]
( )

0, otherwise

x x x x
f x

⎧ − + ∈
= ⎨
⎩

c
Scratchpad 

0

1

2

y

0.5

(0.459, 0.5)

1
x

x
4–4·x3+4·x2, 0 ≤ x ≤ 1

 x < 0

 x > 1

0,

1,

f1(x) = {

f2(x) =
1

2

Median, m = 0.459.

The cumulative function is monotone and there 

are no points of  discontinuity therefore F(b) = 1.

Solve the equation and eliminate impossible 

solutions: b
1
 is eliminated because it is negative 

and b
2
 is eliminated because the CDF is not 

monotone on the interval [0 1 2 ], +  as seen 

on the screen.

A monotone function is entirely 

nondecreasing or nonincreasing on the whole 

domain.

Use the relationship between the probability 

density and the cumulative distribution 

functions. Dierentiate the probability density 

function from part a

The graph of  the cumulative distribution 

function of  a random variable X is equivalent 

to the cumulative frequency diagram of  a set 

of  data. Notice that both have the same shape  

(Ogive). To calculate the median value we  

have to solve the equation F m( ) 
1

2
, which 

can be solved on the GDC. 
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Exercise 1A

1 The probability density function of  a random variable X is given 

by the formula:

P ( )
, , ,

,

X x
x

x k

= =
=

+⎧

⎨
⎪

⎩⎪
12

0 1 2

0 otherwise

a Find the value of  k

b Hence determine the cumulative distribution function.

2 The probability density function of  a random variable X is given 

by the formula:

P( )
, , , ,

,

X x
x

a x

= =
=

⎧

⎨
⎪

⎩⎪

2

20
1 2 3 4

0 otherwise

a Find the value of  a

b Hence determine the cumulative distribution function.

c Calculate P (X ≤ 2).

3 The cumulative distribution function of  a random variable X is 

given by the table below:

X = x 0  2

F (x) 
1

6

1

2


a Determine the formula of  the probability density function.

b What is the modal value of  the variable X ? 

4 The cumulative distribution function of  a random variable X is 

given by the table below:

X = x  3 5 7 9

F (x) 
1

25

4

25

9

25

16

25


a Determine the formula of  the probability density function.

b What is the median value of  the variable X ?

5 A continuous random variable X has a probability density 

function given by

( )
π⎧ ⎡ ⎤

⎪ ⎢ ⎥⎣ ⎦⎨
⎪⎩

∈
=

2
3

sin , 0,

0, otherwise

bx x
f x

a Find the value of  b

b Hence determine the cumulative distribution function.

c Calculate P X ≥
⎛

⎝
⎜ ⎟

π

6
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6 A continuous random variable X has a probability density function 

given by the formula

f x
x

x( )
⎧

⎨
⎪

⎩
⎪

=
− < <

1

4
2

2 2

0

π
,

, otherwise

a Show that this probability function is well dened.

b Find the modal value of  the random variable X

1.2 Other probability distributions

Recall what you have studied in the higher level core course about 

Bernoulli experiments. A Bernoulli trial has two possible outcomes: 

success (S) or failure (F). You also learned that a binomial distribution 

arises from a nite sequence of  n such independent experiments with 

each experiment having an equal probability of  success. As you will  

see in this section the geometric and negative binomial distributions 

also consist of  sequences of  such independent experiments with 

constant probability, but these sequences are of  innite length. 

Geometric distribution

There is a very popular board game in Europe called ‘Ludo’ or ‘People, 

don’t get angry’.

The game is available in many different languages (Ludo, Mensch  

ärgere dich nicht, Člověče nezlob se, Čovječe ne ljuti se, Лyдo, He ce 

cъpди човечe...)

Each player chooses to play with the gures of  one of  the four colours. 

The game is played by each player moving the gures of  his colour by 

as many elds as is given on a die. To start the game each player must 

obtain a ‘6’ on a die. Players are given three attempts to start the game. 

The everlasting question is: ‘How dicult is it to start the game?’ To 

answer this question, we must ask: ‘What is the probability of  being 

able to start the game within the rst three attempts?’

For more practice, 

see exercise 10C 

on pages 502–503, 

and exercise 10K on 

pages 530–531 of the 

course companion.
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Let’s look at the possible sequence of  Bernoulli trials. We will 

denote the outcomes of  each single trial by S or F (S denotes ‘rolling 

a 6’, and F denotes ‘not rolling a 6’). A geometric distribution 

denotes the innite sequence of  such experiments until we reach the 

rst success, e.g. S, FS, FFS, FFFS, FFFFS, FFFFFS......  

Again we need to emphasise that each of  these experiments  

(i.e. each roll of  the die) is mutually independent and that the 

probabilities of  the possible outcomes are always the same. The 

probability of  a success is denoted by p and the probability of  a 

failure is q p p= − ≤ ≤1 0 1,

Denition

A discrete random variable X is said to have a geometric

distribution and we write ∼Geo( )X p  if  P( )X k q pk
= =

1 , where 

0 1 1 1 2 3 4≤ ≤ = − =p q p k, , , , , ...

This denition satises the properties of  a probability distribution.

i ∈ ⇒ = = ∈
1, [0, 1] P( ) [0, 1]kp q q p X k  for all k∈ +

  - every 

single probability is within the interval [0, 1].

ii P( )X k q p p q p p
k

k

k

k

k q p
= = = = = =

∈ ∈ ∈
+ + +

∑ ∑ ∑
  

1 1 1

1

1
1.  

This means that the sum of  all probabilities is 1.

Together, i and ii show that the above denition for a geometric 

distribution is a good one.

Example 

Given that ∼ Geo( )X p , nd P (X = k) if:

a p = 0.4, k = 2

b p = 0.9, k = 6

c p = 0.3, k = 3

a P( ) . . .X = = × =2 0 6 0 4 0 24

b P( ) . . .X = = × =6 0 1 0 9 0 0000095

c P( ) . . .X = = × =13 0 87 0 13 0 024412

Calculate q = 1 − p and then use the denition 

of  a geometric distribution.

Jacob Bernoulli 

(1654−1705), one 

of eight members of the 

famous Swiss family of 

mathematicians in the 

17th and 18th centuries. 

He was the rst one to 

do an extensive piece 

of work on problems 

like this.
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We can calculate those probabilities by using the GDC.

geomPdf(0.4, 2) 0.24

3/99

Scratchpad 

geomPdf(0.9, 6) 0.000009

geomPdf(0.13, 13) 0.024444

Example 

Find the probability that a player will successfully start the game “Ludo”  

or that the player will obtain a “6” on an unbiased die within the rst three attempts.

⎛ ⎞
⎜ ⎟
⎝ ⎠

∼

1

6
GeoX

Method I

P(X = ) + P(X = 2) + P(X = 3)

= + × + × = + + = =
⎛

⎝
⎜

⎞

⎠
⎟

1

6

5

6

1

6

5

6

1

6

1

6

5

36

25

216

91

216

2

0 421

Method II

geomCdf 0.421296

1/99

Scratchpad 

1

6
, 1, 3( )

P( ) .X ≤ =3 0 421

Probability of  scoring a “6” is p =
1

6
.

Calculate q = 1 − p and then use the 

denition of  a geometric distribution 

for values of  k = 1, 2, 3 and add up 

all the probabilities.

Use a cumulative distribution function 

on the GDC.
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Example 8

The probability of  starting the game “Ludo” on the third attempt using  

a biased die is 0.28. Calculate the probability of  scoring a “6” on the die.

∼ Geo( )X p

P( )X q p= =3 2

( ) .1 0 1282
− =p p

Scratchpad 

–0.5

1

(0.2, 0) (0.488, 0)

–1

–2

2

y

.5

f1(x)=(1–x)2
x–0.128

1 1.5
x

p p p1 2 30 2 0 488 1 313= = =. , . , .

Notice that with the given data we have two 

possible solutions.

Use the denition of  a geometric distribution 

for value of  k = 3 and write the equation in 

one variable p.

Use the GDC to solve the equation and 

eliminate the impossible solution, 0 1≤ ≤p

On the GDC we can use two features for solving equations:  

functions or numerical solver. When solving by the numerical solver  

we must estimate the values of  multiple solutions so that in the iteration  

process we can input those values to obtain the desirable solution.  

For the second and third solution we input the values of   

0.4 and  respectively.

nSolve((1–p)
2

p=0.128, p) 0.2

nSolve((1–p)
2

p=0.128, p, 0.4)

nSolve((1–p)
2

p=0.128, p, 1)

0.487689

3/99

Scratchpad 

1.31231

It is much simpler to spot multiple solutions when using the function feature.
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Example 9

Find the number of  attempts needed such that the chance of  successfully starting  

the game “Ludo” is greater than the probability of  not starting the game.

Method I

⎛ ⎞
⎜ ⎟
⎝ ⎠

⇒ >≤∼

1 1
( )

6 2
Geo PX X n

1

6

5

6

1

6

5

6

1

6

1

2

1

+ × + + × > ⇒⎛

⎝
⎜

⎞

⎠
⎟...

n

1

6

5

6

5

6

1

2
1

1

+ + + > ⇒⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

...

n

1

6

1

1
5

6

1

2

5

6
× > ⇒

⎛

⎝
⎜

⎞

⎠
⎟

n

1

2

5

6

1

2

5

6
> ⇒ > ×⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

n

nlog log

n n> = ⇒ =

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

log

log

1

2

5

6

3 80 4

Method II

Scratchpad 

0

1

(4, 0.018)

f1: (4, 0.018)
–1

–2

2

y

1 2 3 4 5 6

f1(x)=geomCdf ( )
1

6

1

2
, 1, x

x

P( ) .X n n≤ > ⇒ =0 5 4

Probability of  scoring a “6” within rst n 

attempts should exceed 
1

2

. Find the probabilities 

for values of  k n= 1 2, , ...,  and add them up. 

Notice the geometric sequence and apply the 

formula for the sum.

Simplify the inequality and use logarithms to 

solve the inequality.

Logarithms here are negative so don’t forget to 

reverse the inequality symbol.

Use the cumulative distribution function on the 

GDC. Since the values are discrete we obtain a 

step function and we can nd the solution by 

tracing the graph.
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Exercise 1B

1 Given that ∼Geo( )X p  nd P(X = k) if:

a p = 0.6, k = 2

b p = 0.14, k = 3

c p = 0.5, k = 4

d p = 0.88, k = 5

2 Given that ∼ Geo( )X p  nd the following:

a P(X ≤ 4) if  p = 0.25

b P(X > 6) if  p = 0.7

c P(5 ≤ X ≤ 7) if  p = 0.3

d P(1 < X ≤ 7) if  p = 0.991

3 Mario is shooting at a balloon with a bow and arrow. Each 

attempt is independent and the probability that Mario hits the 

balloon with each shot is 0.73. Mario has three arrows. Find the 

probability that Mario will destroy the balloon. 

4 In a certain school 92% of  students are familiar with the re 

emergency procedure. Students from the school are selected at 

random. What is the probability that:

a the fth selected student is the rst one who doesn’t know the 

procedure;

b the rst student selected who doesn’t know the procedure will 

not occur before 4th selected student?

5 Fred manufactures wooden souvenir spoons. The probability 

that a spoon will be manufactured with no defect is 0.85. Fred 

inspects every manufactured spoon and when one is found to be 

defective, he adjusts the machine. 

a What is the probability that the fourth manufactured spoon is 

the rst defective one?

b What is the probability that within the manufacture of  six 

spoons there will be no need for adjustment?

6 Given that Geo( )X p∼ , show that P( ) ,X k q kk
> = ∈

+

 .
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Investigation

Let ∼ Geo( )X p . Calculate the following probabilities:

a = > > >0.4, P( 5| 3), P( 2)p X X X

b = > > >0.7, P( 6| 2), P( 4)p X X X

c = > > >0.12, P( 12| 5), P( 7)p X X X

Make a conjecture about the connection between the conditional and simple probability,  

and try to prove the general form of  your conjecture.

Expected value and variance of a geometric random variable

In this section we will learn how to nd the expected value and the 

variance of  a geometric random variable. In order to do so you will 

need to manipulate innite geometric sequences. Recall the formula 

for the sum of  n consecutive terms of  a geometric sequence: 

1
2 3 1

1

1

+ + + + + =

+

q q q q
n q

q

n

... , where |q| < .

When n becomes an extremely large number and q is a number 

between − and , the higher powers of  q will be very close to zero. 

Therefore we can write

1 1
2 3 2 3 1

1

1 0
1

+ + + + = + + + + + = =
→∞ →∞

( )
+

q q q q q q q
n n

n q

q

n

... lim ... lim
11

1

1− −
=

q q

So in other words you have obtained the result for the sum of  an 

innite geometric sequence.

] [2 3 1

1
1 ... , 1, 1

q
q q q q+ + + + = ∈ −

Now if  we dierentiate this sequence successively, term by term, we 

will obtain the following: 

] [2 3 1

1
1 ... , 1, 1

q
q q q q+ + + + = ∈ −

] [2

2 3 1

(1 )
1 2 3 4 ... , 1,1

q
q q q q⇒ + + + + = ∈ −

If  we dierentiate again we see that:

] [3

2 3 2

(1 )
2 3 2 4 3 5 4 ... , 1, 1

q
q q q q

−
⇒ + × + × + × + = ∈ −

We will use these results to nd the expected value and variance of  

a geometric random variable, as shown in the following example.



Chapter 1 19

Example 0

Find the expected value and the variance of  a geometric random variable X

E PX k X k

k

( ) = × =
∈ +

∑ ( )


= × + × + × + × + + × +1 2 3 4
2 3 1p qp q p q p k q pk

... ...

= + + + + + +p q q q kqk( ... ...)1 2 3 42 3 1

= = =p p
q p p

1

1

1 1
2 2( )

Var E (E P( ) ( ) ( )) ( )X X X k X k
k p

= − = × = −
⎛

⎝
⎜

⎞

⎠
⎟

∈ +
∑2 2 2

2
1



E X p qp q p q p

k q pk

2 2 2 2 2 2 3

2 1

1 2 3 4( ) = × + × + × + × +

+ × +... ...

= + × + × + × + + × +p q q q k qk( ... ...)1 2 3 42 2 2 2 2 3 2 1

2 3((2 1) 1 (3 1) 2 (4 1) 3 (5 1) 4p q q q= − × + − × + − × + − × +

1... (( 1) 1) ...)kk kq+ + − × +

2 3 1

2 3 1

((2 3 2 4 3 5 4 ... ( 1) ...)

(1 2 3 4 ... ...))

k

k

p q q q k k q

q q q k q

= + × + × + × + + + × +

− + × + × + × + + × +

= − = − =
( ) ( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟p p

q q p p

p

p

2

1

1

1

2 1 2

3 2 3 2 2

Var E EX X X
p

p p

p

p

q

p
( ) ( ) ( )( ) − −

= − = − = =2
2 2 1 1

2 2 2 2

Use the denition of  

expected value.

Use the distributive 

property.

Use the result obtained 

in the rst derivative 

of  the geometric series 

and simplify the 

expression.

Use the denition of  

variance.

To simplify the process 

we nd E (X2) rst.

Use the formula for all 

the terms.

n n n2 (( 1) 1)= + ×

Rewrite by using the 

two innite sums 

obtained above.

Use the results of  the 

rst and the second 

derivative to simplify.

Use the result to nd 

the variance and 

simplify.

Given a geometric random variable, if  ∼ Geo( ),X p

then E VarX X
p

q

p
( ) ( )= =

1

2
and . 

This will be used in Example  on the next page.
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Example 

Find the expected number of  attempts to start the game “Ludo”. Use the empirical rule to 

determine the maximum number of  attempts it will take to start the game.

( )⎛ ⎞
⎜ ⎟
⎝ ⎠

⇒ = =∼

1 1

16
6

Geo E 6X X

Var X( )
⎛
⎝
⎜

⎞
⎠
⎟

= = ⇒ = =

5

6

1

36

2
30 30 5 48σ

[ . , . ] [ . , . ]6 3 5 48 6 3 5 48 10 4 22 4− × + × = −

Apply the formula for the expected value given 

above.

Apply the formula for the variance and 

calculate the standard deviation.

The empirical rule (99.73%) states that the 

whole population will fall within 3 standard 

deviations from the mean value, therefore the 

maximum number of  attempts to start the 

game is 23.

Exercise 1C

1 Find the expected value and the variance for the geometric 

distributions given in Exercise 1B, questions 1 and 2

2 Mario is shooting at a balloon with a bow and arrow. Each 

attempt is independent and the probability that Mario hits the 

balloon with each shot is 0.73. 

a What is the expected number of  shots Mario must make to 

destroy the balloon?

b Use the empirical rule to nd the maximum number of  shots 

Mario must make to destroy the balloon.

3 In a certain school 54% of  students are familiar with the election 

procedure. Students from that school are selected at random. 

Using the empirical rule, determine how many students must be 

selected at random to ensure that one of  the selected students 

will be familiar with the election procedure.

Negative binomial distribution

The negative binomial distribution is also known as Pascal’s 

distribution, named after Blaise Pascal (1623–1662). Pascal was the 

rst mathematician to explore the negative binomial distribution using an 

integer parameter. The negative binomial distribution is sometimes called 

Pólya’s distribution, named after George Pólya (1887–1985) who extended 

the parameter values to the set of real numbers.
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Let’s again consider a sequence of  Bernoulli trials but this time we will 

stop not after the rst success, but when two successes have occurred, e.g. 

SS, FSS, SFS, FFSS, FSFS, SFFS, FFFSS, FFSFS, FSFFS, SFFFS,....... 

In the table below, you can see that for each number of  trials, there is now 

more than one permutation in order to achieve two successes:

Geometric distribution Two successes

S SS

FS FSS, SFS

FFS FFSS, FSFS, SFFS

FFFS FFFSS, FFSFS, FSFFS, SFFFS

Notice also that the minimum number of  trials we must perform is  

the number of  successes we require, which in this case is two. 

Let’s consider a sequence of  Bernoulli trials where we stop when  

three successes have occurred. To make it simpler, we’ll use the table  

below to compare the number of  dierent permutations available for 

three successes within the geometric distribution.

Geometric distribution Three successes

S SSS

FS FSSS, SFSS, SSFS,

FFS FFSSS, FSFSS, FSSFS, SFFSS, SFSFS, SSFFS

We might notice that as we increase the number of  successes required,  

we increase the number of  permutations available.

In general, if  we record up to r successes in a sequence of  k Bernoulli 

trials we actually consider two independent events. We need to obtain  

r −  successes in the rst k −  experiments and we need to obtain one 

last success in the k-th trial. The rst part of  the sequence can be 

described by the binomial distribution with the parameters k −  and  

r − , and then at the end we need to have one more success. So we can 

nd the probability density function.

P( )X k q p
k

r

k r r

r k

= =
⎛

⎝
⎜

⎞

⎠
⎟

− −1

1

1

1 1− − successes within  trials

  



× =
⎛

⎝
⎜

⎞

⎠
⎟p q

k r

k
k

r
− −th trial th success

1

1

rr rp

In order to have r successes we must have at least r experiments, therefore 

k = r, r + , r + 2, r + 3, ...

This discrete distribution is called negative binomial distribution.

Denition

A discrete random variable X is said to have negative binomial 

distribution and we write ∼ NB( , )X r p  if  P X k
k

r
q pk r r( )= =

⎛

⎝
⎜

⎞

⎠
⎟

1

1
, 

where 0 1 1 1 2 3≤ ≤ = − = + + +p q p k r r r r, , , , , ,...
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It is left as an exercise to show that this is a good denition of  a  

probability distribution. Therefore we need to prove that:

i P( )X k q p
k

r

k r r= ∈ ⇒ ≤ ≤
⎛

⎝
⎜

⎞

⎠
⎟[ ],0 1 0 1

1

1

for all , 1, 2, 3, ...k r r r r= + + +

ii P( )X k q p
k r

k r r

k r

k

r
= = ⇒

⎛

⎝
⎜

⎞

⎠
⎟ =

=

∞

=

∞

1 1
1

1

Geometric distribution is in fact a special case of a negative binomial 

distribution where we require just one success, r = 1, Geo(p) = NB(1, p).

Example 

Given that ∼ NB( , )X r p  nd P (X = k) if:

a r = 2, p = 0., k = 2 

b r = 6, p = 0.5, k = 9 

c r = 2, p = 0.25, k = 50 

a
⎛ ⎞

= = × =⎜ ⎟
⎝ ⎠

2 2 2
2 1

P( 2) 0.9 0.1 0.01
2 1

X

b
⎛ ⎞

= = × =⎜ ⎟
⎝ ⎠

9 6 6
9 1

P( 9) 0.5 0.5 0.109
6 1

X

c
⎛ ⎞

= = × =⎜ ⎟
⎝ ⎠

50 12 12
50 1

P( 50) 0.75 0.25 0.0310
12 1

X

Use the denition of  a negative binomial 

distribution and apply the formula.

Unfortunately, graphic display calculators have no negative binomial  

distribution under the distribution features, but the programming  

capacity of  a calculator helps us to write down a useful program  

with just a few lines.

9

*nbpdf

Dene nbpdf(r, p, k)=

Prgm

Disp “Prob.=”, nCr(k–1, r–1)·(1–p)k r
p
r

EndPrgm

1/1

nbpdf1.1

*nbpdfnbpdf(6, 0.5, 9)

Dene nbpdf(r, p, k

Prgm

Disp “Prob.=”, nCr

EndPrgm

11

*nbpdf 1.1

99

Probbii = 0.1095

Done

nbpdf(1, 0.5, 50)

Probbii = 0.010

Done

A similar programme can be created for the cumulative distribution  

function of  a negative binomially distributed variable.
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Example 

A new drug is to be tested on people. If  only 2% of  the people asked to participate  

agree to take part in the study, what is the probability that:

a 8 people will be asked before 3 are found who agree to participate;

b 2 people will be asked before 5 are found who agree to participate;

c not more than 5 people are asked before 2 are found who agree to participate? 

X NB r p∼ ( , )

a r p X= = ⇒ = =
⎛

⎝
⎜

⎞

⎠
⎟3 0 12 8 0 88 0 12

7

2

5 3, . ( ) . .P

= 0.092

b r p X= = ⇒ = =
⎛

⎝
⎜

⎞

⎠
⎟5 0 12 12 0 88 0 12

11

4

7 5, . ( ) . .P

= 0.00336

c r p X= = ⇒ ≤ ≤2 0 12 2 5, . ( )P

= = + = + = + =P P P P( ) ( ) ( ) ( )X X X X2 3 4 5

=
⎛

⎝
⎜

⎞

⎠
⎟ +

⎛

⎝
⎜

⎞

⎠
⎟ × +

⎛

⎝
⎜

⎞

⎠
⎟ × +

⎛

⎝

1

1

2

1

3

1

4

1

0 12 0 88 0 12 0 88 0 12
2 2 2 2

. . . . .

⎜⎜
⎞

⎠
⎟ ×0 88 0 12

3 2
. .

= 0.2

Identify the parameters of  a negative 

binomial distribution and use the 

formula to calculate the probabilities.

Identify the values of  the variable 

and add up all the probabilities for 

the identied values.

The binomial and negative binomial distributions are similar: the 

binomial distribution takes a xed number n of Bernoulli trials and 

generates probabilities of the number of successes, r, as r varies  

from 0 to n. Conversely, negative binomial distribution takes a xed number 

of successes, r, and generates probabilities that we perform n Bernoulli trials 

(where n varies from r to innity) in order to achieve these r successes.

Exercise 1D

1 Given that ∼NB( , )X r p  nd P (X = k) if:

a r = 1, p = 0.2, k = 2

b r = 3, p = 0.5, k = 4

c r = 7, p = 0.8, k = 9

d r = 23, p = 0.77, k = 32

2 Given that ∼NB( , )X r p  nd:

a P(X ≤ 4) if  p = 0.25 and r = 3

b P(X > 6) if  p = 0.5 and r = 2

c P(5 ≤ X ≤ 7) if  p = 0.82 and r = 4

d P(8 < X ≤ 11) if  p = 0.43 and r = 5
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3 The random variable has the following distribution X : NB(2, p).

a Given that p X< = =
1

2

24

125
3 and P( ) , nd the value of  p

b Hence nd P (3 ≤ X ≤ 5).

4 Before Alemka can start a game, she has to obtain two “ones” 

when rolling a fair tetrahedral die with the standard faces 

1, 2, 3 and 4. Let random variable X denote the total number of  

times Alemka has to throw the die until she obtains the second 

“one”.

a Write the distribution of  X, including the value(s) of  each 

parameter.

b Find the value of  x such that 
3

( )
32

P X x= = .

c Calculate P (X ≤ 5).

5 Nicholas is playing a game on his smart phone. In this game 

he needs to eat apples in order to pass to the next level. The 

probability that Nicholas eats an apple is 0.85. He needs to eat 

at least four apples in order to advance in the game. What is the 

probability that he will eat

a exactly ve apples before he advances;

b at least seven apples before he advances?

6 In a certain school 92% of  students are familiar with the re 

emergency procedure. Students from that school are selected at 

random. The re inspector conducts an interview and needs at 

least ve students who are familiar with the procedure. What is the 

probability that:

a he will need to interview exactly six students in order to satisfy 

the need;

b he will not need to interview more than a dozen students?

7 An ice-cream factory produces a special type of  a diet ice-cream. 

The probability that an ice-cream will be produced with no  

defect in shape is 0.85. Tony inspects every ice-cream and when 

he nds three ice-creams to have a shape defect he adjusts the 

machine. 

a What is the probability that he will inspect exactly ve  

ice-creams before he adjusts the machine?

b What is the probability that within half  a dozen ice-creams 

there will be no need for adjustment?
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1.3 Probability generating functions

When tossing two coins the number of  heads obtained is  

recorded. Let X be the discrete random variable. The table  

below shows the probability distribution function of  X

X = x
i

0  2

P(X = x
i
) 

1

4

1

2

1

4

You may notice that, in this table, the probabilities are  

arranged sequentially as the value of  X changes. From this  

table we can write the probabilities in the form of   

a polynomial expression involving a variable, t: 

G t t t t t( )t = × + × + × = + +
1

4

1

2

1

4

1

4

1

2

1

4

0 1 2 2

This expression is called a probability generating function

for this discrete random variable. We can immediately notice  

that G 1 1
1

4

1

2

1

4

( ) = + + =  since the coecients of  this  

polynomial are the corresponding probabilities and the sum  

of  all the probabilities must be equal to .

Example 

A pair of  dice are rolled. Let X denote the sum of  the outcomes on the upper faces.  

Write the probability distribution function of  the random variable X and nd the 

probability generating function.

x
i

2 3 4 5 6 7 8 9 0  2

p
i

1

36

2

36

3

36

4

36

5

36

6

36

5

36

4

36

3

36

2

36

1

36

2 3 4 5 6 7 8

9 10 11 12

1 1 1 1 5 1 5

36 18 12 9 36 6 36

1 1 1 1

9 12 18 36

( )G t t t t t t t t

t t t t+

= + + + + + +

+ + +

Look at all the possible pairs of  

outcomes and their sums. Find 

the corresponding probabilities. 

Take p
i
 to be the coecients of  

the polynomial and x
i
 to be the 

powers. 

Again notice that G () = .

A random variable can also assume values in an innite set of  numbers  

as in the case of  a geometric random variable, as shown in Example 5.

When studying Probability 

it is important not to rely 

too much on intuition. Even 

the sharpest minds like Jean 

D’Alembert (1717–1783) have 

at some stage made famous 

mistakes. In his article Croix 

ou Pile in the French 

Encyclopédie he considered 

the following problem: in two 

tosses of a fair coin, what is 

the probability that Heads will 

appear at least once?  

D’Alembert’s answer was 
2

3
. 

He reasoned that in real life 

no one would continue the 

experiment after Heads 

showed up on the rst toss. In 

other words, D’Alembert 

mistakenly assumed that the 

sample space was {H,TH,TT}.
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Example 

A coin is ipped until a head is obtained. The random variable X denotes the number of  

ips. Write the probability distribution of  the random variable describing this experiment 

and nd the probability generating function.

x
i

 2 3 4 ... k ...

p
i

1

2

1

4

1

8

1

16
...

1

2
k

...

2 3 41 1 1 1 1

2 4 8 16 2
( ) ... ...

k

k
G t t t t t t= + + + + + +

= = ≠

1

2

1
1

2

2
2

t

t

t

t

t,

The possible outcomes are H, TH, TTH, 

TTTH,... and so on. ∼

1

2
X Geo

G(t) is an innite geometric series with  

common ratio 
1

2
t . 

Use the formula for the sum of  an innite 

geometric series and simplify the expression.

Notice that we were using the formula S
∞
=

1

1
u

r
 for the sum of  an  

innite geometric series, under the condition that this series converges.  

That is, we must have − < < ⇒ − < <
1

2
1 1 2 2t t . For the other values of  t, 

this sum is not dened.

Again we also notice that G( )1 1
1

2 1
= =

Denition

Let X be a discrete random variable assuming nonnegative integer values and 

P X k p kk=( ) = =, , , , ...0 1 2 3  are the corresponding probabilities. Then a function 

G:R → R of  the form G t p t p p t p t p t p tk

k

k

n

n( ) . . . . . .= = + + + + + +
=

∞

∑
0

0 1 2

2

3

3  is 

called a probability generating function

As seen in the previous examples, if  a discrete random variable takes values 

only within a nite set, we could consider this as an innite set where the 

probability of  the variable taking any value outside the nite set is zero.

Let’s try to nd probability generating functions for some discrete 

distributions that we are already familiar with.

Bernoulli distribution X : B (, p):

0 1(P( 0) ) (P( 1) ) ( )X q and X p G t qt pt q pt= = = = ⇒ = + = +

Binomial distribution X : B (n, p):

0 1

P( ) , 0, 1, 2, 3, ..., ( )

( ) ( )

n k k

n k k k n k k n
n n

k k

n
X k q p k n G t

k

n n
q p t q pt q pt

k k

−

− −

= =

⎛ ⎞
= = = ⇒⎜ ⎟

⎝ ⎠

⎛ ⎞ ⎛ ⎞
= = = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑
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Poisson distribution X : Po (m):

( )

( ) ( )

− −∞

=

∞

=

− − −= ×

= = = ⇒ =

= =

∑

∑

0

*

0

1

( )
! !

!

P , 0, 1, 2, 3, ...
k m k m

k

k

k

k

m m mt m t

m e m e

k k

mt

k

X k k G t t

e e e e

Geometric distribution X : Geo(p):

− − − −
∞ ∞

= =

= = = ⇒ = =∑ ∑
1 1 1 1

1 1

P( ) , 1, 2, 3, ... ( )k k k k k

k k

X k q p k G t q pt pt q t

Substitute k –  = i then,

pt q t pt q tk k i i

k i

pt

qt

− −

=

∞

=

∞

∑ ∑= =1 1

1 0 1

When − < qt < , this is an innite geometric series with the 

common ratio qt

Negative binomial distribution X : NB(r, p):

1 1
P( ) , , 1, 2, ... ( )

1 1

k r r k r r k

k r

k k
X k q p k r r r G t q p t

r r

− −
∞

=

− −⎛ ⎞ ⎛ ⎞
= = = + + ⇒ =⎜ ⎟ ⎜ ⎟

− −⎝ ⎠ ⎝ ⎠
∑

G(t) =
⎛

⎝
⎜

⎞

⎠
⎟ =

+ −⎛

⎝
⎜

⎞

⎠
⎟

− −

=

∞

=

∞

∑ ∑p t
k

r
q t p t

r i

i
q tr r k r k r r r i i

k r i

1

1

1

0

Using the substitution k – r = i and the formula for negative 

binomial series ( )1
1

0

− =
+ −⎛

⎝
⎜

⎞

⎠
⎟

=

∞

∑x
n i

i
x

n i

i

, where − < qt < .

p t q tr r i i
r i

i

p t

qt

pt

qti

r r

r

r+ −⎛

⎝
⎜

⎞

⎠
⎟

− −

⎛

⎝
⎜

⎞

⎠
⎟

=

∞

∑ = =
1

1 10 ( )

Example 

A random variable X has a probability generating function 
4

( ) , 4
a

t
G t t= ≠

a Find the value of  a

b Hence calculate P ( ≤ X ≤ 3).

a
a

a

4 1
1 3= ⇒ =

b
3 3 1

4 4
1

4

( )
tt

G t = = ×

= × + + + +
⎛

⎝
⎜

3

4

1

4

1

16

1

64
1

2 3
t t t ...

P( )1 3
3

4

1

4

1

16

1

64

63

256
≤ ≤ = × + + =

⎛

⎝
⎜

⎞

⎠
⎟X

Use the fact that G(1) = 1.

Rewrite it in a polynomial form.

Add the coecients of  the powers 1, 2, and 3.

*We have used 

Maclaurin’s formula 

for the exponential 

function ex x

k

k

k

=
∞

∑
!0

This formula is a part 

of the Calculus option.
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Now let’s take a look at the probability generating function and its 

successive derivatives.

0

2 3

0 1 2 3( ) ... ...
k

k n

k nG t p t p p t p t p t p t
∞

=

= = + + + + + +∑

2 3 1 1

1 2 3 4

1

( ) 0 2 3 4 ... ...n k

n k

k

G t p p t p t p t np t k p t− −
∞

=

′ = + + + + + + + = ×∑

( )
2

2 2 2

2 3 4( ) 0 0 2 3 2 4 3 ... 1 ... ( 1)
k

n k

n kG t p p t p t n n p t k k p t
∞

=

− −′′ = + + + × + × + + − + = − ×∑

By considering the derivatives of  the probability generating function 

when t = , we can derive some very useful results for the value of t = :

i ( )
0 0

1 1 1
k

k k

k k

G p p
∞ ∞

= =

= = =∑ ∑

ii ( ) ( )
∞ ∞

= =

′ = = =∑ ∑1

1 1

1 1 E
k

k k

k k

G k p k p X

iii ( ) 2

2 2

1 ( 1) 1 ( 1) E( ( 1))k

k k

k k

G k k p k k p X X
∞ ∞

= =

″ = − = − = −∑ ∑

As you can see, we can calculate the expected value E(X ) directly 

from the rst derivative of  a probability generating function. We can 

also calculate the variance Var(X ) of  a random variable using 

derivatives of  the probability generating function.

G k k p k k p k p kp p pk

k

k k

k

k

kk

″( ) ( ) ( )1 1
2

2 2

2 2

1 1

2

= − = − = − + −
=

∞

=

∞

=

∞

=

∞

∑ ∑ ∑∑ == −
=

∞

=

∞

∑ ∑k p kpk

k

k

k

2

1 1

= E(X 2) − E(X )

( )

( )


( ) ( )2 2

1

1 E( ) E( ) E( ) 1 1

G

G X X X G G″ = − ⇒ = ″ + ′

Var( ) ( ) ( ( )) ( ) ( ) ( ( )) ( ) ( )(X X X G G G G G G= − = + − = + −E E2 2 21 1 1 1 1 1″ ′ ′ ″ ′ ′(( ))1

Let’s summarize the results we just obtained:

G

X G

X G G G

( )

( ) ( )

( ) ( ) ( ) ( ( ))

1 1

1

1 1 1 1

=

=

= + −

E

Var

′

″ ′ ′

Knowing these formulas and generating functions we can much  

more easily calculate some of  the expected values and variances  

that previously were dicult to nd. We are going to start with the 

binomial distribution.
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Example 

Use the results of  the probability generating function to nd the expected value and the 

variance of  a Binomial random variable with parameters n and p

B( , ) ( ) ( )nX n p G t q pt⇒ = +∼

1 1( ) ( ) ( )n nG t n q pt p np q pt− −
⇒ ′ = + × = +

2

2 2

( ) ( 1) ( )

( 1) ( )

n

n

G t np n q pt p

n n p q pt

⇒ ″ = − + ×

= − +

( ) ( ) ( )
1

1

1E 1
n

q pX G np np+ ×= ′ = =


Var ( ) ( ) ( ) ( ( ))X G G G= + −″ ′ ′1 1 1 1

= − + ×( ) + −n n p q p np np
n

( ) ( )1 1 12

1

2

  

= − + − = − =n p np np n p np p npq
2 2 2 2 2 1( )

Use the probability generating function 

formula and dierentiate it twice to 

obtain the rst and second derivatives.

Use the formula for expected value.

Use the formula for variance and the 

previous results.

Simplify the result.

It is much easier to nd the expected value and the variance of  a 

Poisson distribution, as Example 8 shows.

Example 8

Use the probability generating function to nd the expected value and the variance of  a 

Poisson random variable with parameter m.

( ) ( 1)Po ( ) em t
X m G t

−⇒ =∼

( 1) ( 1)( ) e em t m t
G t m m

− −
⇒ ′ = × =

( 1) 2 ( 1)( ) e em t m t
G t m m m

− −
⇒ ″ = × =

( ) ( ) ( )1 1
E 1 e

m
X G m m

−=  = =

Var( ) ( ) ( ( ))X G G G= + ( ) −″ ′ ′1 1 1 1

( ) ( ) ( )2 1 1 1 1 1 1e e (1 e )m m m

m m m
− − −= + −

= + − =m m m m
2 2

Use the probability generating function formula 

and dierentiate it twice to obtain the rst and 

second derivatives.

Use the formula for expected value.

Use the formula for variance and the previous 

results.

Simplify the result.

There are still many other distributions that do not have special 

names and for many of  those distributions, probability generating 

functions make their calculations much easier. Example 9 will 

illustrate this.
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Example 9

Max and Marco alternately throw darts. The rst one who scores a bull’s-eye wins the 

game. The probabilities that Max and Marco score a bull’s-eye in every shot are 
3

4
 and 

5

8

respectively. Max throws rst. Their successive throws are independent and the random 

variable X denotes the number of  throws before the game is over.

a Find the probability generating function of  the variable X and verify your result.

b What is the expected number of  throws before the game is over?

a
2 3 43 1 5 1 3 3 1 3 1 5

4 4 8 4 8 4 4 8 4 8
( )G t t t t t= + × + × × + × × ×

+ × × × × + × × × × × +
1

4

3

8

1

4

3

8

3

4

1

4

3

8

1

4

3

8

1

4

5

8

5 6
t t ...

= + + +

+ + +

⎛
⎝
⎜

⎞
⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠

3

4

3

32

3

32

5

32

3

32

3

32

1

1

2 2

2 2 2

2

t t t

t t t

...

⎟⎟
⎛

⎝
⎜ +

2

...

= + = × =⎛

⎝
⎜

⎞

⎠
⎟

+ +3

4

5

32

1

1
3

32

24 5

32

32

32 3

24 5

32 3

2

2

2

2

2

2
t t

t

t t

t

t t

t

G 1 1
24 5

32 3

29

29

( )
+

= = =

b Method I

2

2

24 5

32 3
( )

t t

t
G t

+
=

     

 

2 2

2
2

24 10 32 3 24 5 6

32 3
( )

t t t t t

t

G t
+   + 

  =

 

2 3 2 3

2
2

768 320 72 30 144 30

32 3
( )

t t t t t

t

G t
+   + +

  =

=
+ +

( )

768 320 72

32 3

2

2
2

t t

t

 = = = =    + +

 
E X G 1 1 38

768 320 72

32 3

1160

841
2

At least two throws are made before the game  

is over.

Max scores or  

Max misses and Marco scores or  

Max misses and Marco misses  

and Max scores or  

Max misses and Marco misses  

and Max misses and Marco  

scores or...

Notice that there are two innite 

geometric series that alternate term 

by term with dierent rst terms 

and equal common ratio.

Use the formula for the sum of  an 

innite sequence and simplify your 

answer.

The sum of  all probabilities must be 

equal to 1, G(1) = 1.

Dierentiate the probability 

generating function. Use the 

quotient rule.

Simplify the result.

Calculate G′(1). Notice that we 

expect at least two throws to be 

made.
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Method II

2/99

*Unsaved 1.1

d 24∙x+5∙x2
x=1

32–3∙x2( )dx
| 40

29

40 1.37931

29

|

At least two throws are made before the game  

is over.

Use a GDC to nd G ′(1). 

Notice that we expect at least  

two throws to be made.

Exercise 1E

1 Four coins are tossed. Let X denote the number of  heads that 

appear face up. Write the probability distribution of  the random 

variable X and nd the probability generating function.

2 A die is rolled until we get a “1”. The random variable X denotes 

the number of  rolls. Write the probability distribution of  the 

random variable describing this experiment and show that the 

probability generating function is 
6

6 5 5
( ) ,

t

t
G t t= ≠

3 A random variable X has a probability generating function 
2

3
( ) , 3

t
G t t

−

= ≠ . Find: 

a P (X = 0);

b P (X ≤ 1);

c P (X ≥ 3) 

d P (X ≥ k) 

4 Use the probability generating function to nd the expected value 

and the variance of  the following variables:

a X is a Bernoulli variable with the probability p;

b X is a negative binomial with the parameters p and r.

5 Find the expected value and the variance of  the random variables 

in questions 1, 2 and 3.
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6 Noddy and Eve play a basketball game in their courtyard. 

Taking turns, they shoot a basketball at a hoop from a free throw 

line. The rst one who makes a basket wins the game. The 

probabilities that Noddy and Eve score in any shot are 
2

3
 and 

4

7

respectively. Successive shots are independent. Eve shoots rst. 

The random variable X denotes the number of  shots before the 

game is over.

a Find the value of  P (X = 1) and show that P (X = 4) =
2

49

b Find the probability generating function for the random 

variable X and verify your result.

c What is the expected number of  shots before the game is over? 

d Use the empirical rule to nd the maximum number of  shots 

to be made before the game is over.

The sum of independent variables

If  we look at the experiment of  tossing two coins we can say that we 

actually have two independent events of  tossing one coin at a time. 

Now we are going to note the number of  heads and we can say that 

coin  is represented by the random variable X, and coin 2 is 

represented by the random variable Y. Both X and Y have the same 

probability distribution:

x
i 0 

p
i

1

2

1

2

They also have the same generating function:

0 11 1 1 1

2 2 2 2
( ) ( )

X Y
G t G t t t t= = + = +

We notice that if  we multiply these two probability generating 

functions we obtain the result we calculated earlier, when we found 

a probability generating function for the number of  heads shown 

when we tossed two coins together.

21 1 1 1 1 1 1

2 2 2 2 4 2 4
( ) ( ) ( )

X Y X Y
G t G t t t t t G t+

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

× = + × + = + + =

In the course companion, we were easily manipulating the 

parameter of  a Poisson distribution. For example, suppose that the 

mean number of  cars arriving at a petrol station in one hour is m. 

We were able to say that within half  an hour the mean number 

was 
m

2
, and in three hours the mean number was 3m. The reason why 

we were able do this is that the parameter of  a Poisson distribution is 

the expected value or the mean. So parameters of  the corresponding 

Poisson distributions were calculated by using the same elementary 

transformations. We were then nding the given probabilities.
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Example 0

The times at which a y and a wasp arrive into a room can be modelled by Poisson 

distributions with parameters 0.3 and 0. respectively. Insects arrive independently  

into the room. Let random variables X and Y denote the number of  ies and wasps in the 

room respectively. Let the random variable Z denote the total number of  ies and wasps  

in the room. Find probability generating functions of  X, Y, and Z, and nd the possible 

relationship between them. 

Z = X + Y

( )
( )

= = =∑
0.3 1

( ) P e
t

r

X

r

G t X r t

( )
( )

= = =∑
0.1 1

( ) P e
t

r

Y

s

G t Y s s

( ) ( )
= = =∑ 0.4 1( ) P ek t

Z

k

G t Z k t

( ) ( ) ( ) ( ) ( ) ( )+ − − −− + −= = = ×
0.3 0.1 1 0.3 1 0.1 10.3 1 0.1 1

e e e e
t t tt t

= G
X
 (t) × G

Y
 (t)

The number of  insects Z is the number  

of  ies X and wasps Y in the room.

Write down probability generating 

functions for each insect. To follow the 

calculation for Y (the number of  wasps)

more easily, use a dierent index, s.

When we count the number of  both 

insects in the room we make no 

distinction between ies and wasps. 

Therefore notice that Z : Po(0.4).

The example above illustrates a very important property of  

probability distribution functions that doesn’t depend on the 

probability distribution of  the given random variables, but is valid 

across all probability distributions.

Theorem :

X
1

and X
2
 are two independent random variables with the 

corresponding probability generating functions G t G t
X X1 2

( ) ( ) and .  

If  a new random variable X is such that 

X = X

 + X

2
 then G t G t G t G t

X X X X X
( ) ( ) ( ) ( )= = ×

+1 2 1 2

Proof:

G t X k t
X

k

k

( ) ( )= =∑P

= = +
+

+

∑P( )X r s t
r s

r s

1 2P(( ) ( )) r s

r s

X r X s t
+

= = ∩ =∑∑

= = =∑∑ P P( ) ( )X r X s t t
r s

sr

1 2

= = =∑ ∑P P( ) ( )X r t X s t
r

r

s

s

1 2

= ×G t G t
X X1 2

( ) ( )

Use the substitution k = r + s.

Rewrite the sum by using both indices 

and variables X
1
 and X

2
 .

Since the variables are independent 

use the multiplicative probability law.

Use the distributive property.

Q.E.D.
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Theorem  can be extended to nd the probability generating function of  

the sum of  more than two independent random variables.

Corollary

Given that X X X n
n1 1

, ,..., , ∈
+

 , are n independent random variables with 

the corresponding probability generating functions G t G t G t
X X X

n1 2
( ), ( ), ..., ( ). 

If  a new random variable X is such thatX X X X X
n k

k

n

= + + + =
=

∑1 2

1

...  then 

G t G t G t G t G t
X X X X X

k

n

n k

( ) ( ) ( ) ... ( ) ( )= × × × =
=

∏1 2

1

The proof  of  this corollary is left to the reader as an exercise.

This corollary helps us to easily calculate the probability generating 

functions of  a random variable which can be modelled as a sequence of  

simpler experiments described by the same random variable.

Example 

Random variable X denotes a Bernoulli trial and its corresponding probability generating 

function is given by G
X
(t) = q + pt, where p and q are respective probabilities of  a success 

and a failure in the trial. Use the corollary above to nd the probability distribution 

function of  the binomial random variable Y that describes a sequence of  n such 

independent trials.

Y X X X X

n
k

n

= + + + =
=

∑...
 independant trials

  
1

⇒ = × × ×G t G t G t G t
Y X X X

n

( ) ( ) ( ) ... ( )

 factors

  

= + × + × × +( ) ( ) ... ( )q pt q pt q pt

n  factors

  

= (q + pt)n

A binomial distribution describes a sequence of  n 

independent repetitions of  a Bernoulli trial.  

Therefore Y follows a binomial distribution.

Use the corollary to nd the probability generating 

function.

Notice that we have obtained the same result much 

simpler.

Exercise 1F

1 The probability generating functions of  independent random variables 

X and Y are given by the following formulas: G t
X

t
( ) =

+⎛

⎝
⎜

⎞

⎠
⎟

1 3

4

2

 and 

G t
Y

t
( ) =

+⎛

⎝
⎜

⎞

⎠
⎟

2

3

2

.

a Determine G
X+Y

(t);

b Find P (X + Y ≤ 1); 

c Calculate E (X + Y ).
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2 The probability generating functions of  independent random variables 

X and Y are given by the following formulas: G t
X

t

t
( ) =

⎛

⎝
⎜

⎞

⎠
⎟

2

3

 and 

G t
Y

t

t
( ) =

⎛

⎝
⎜

⎞

⎠
⎟

3 2

3

a Determine G
X + Y

(t);

b Calculate E (X + Y ); 

c Calculate Var (X + Y ).

3 The times in which bikes, cars, and buses arrive at a crossing  

can be modelled by Poisson distributions with parameters  

0.25, 0.15, and 0.05 respectively. All of  them arrive  

independently at the crossing. Let random variables X, Y,

and Z denote the numbers of  each of  them at the crossing. 

a Find the probability generating functions of  X, Y, and Z. 

b Find the probability that at least two kinds of  vehicle will  

be at the crossing at a given moment.

4 Geometric random variable X has the corresponding probability 

distribution function given by G tX

pt

qt
( ) =

1
, where p and q are 

probabilities of  a success and a failure respectively. Use the  

corollary to nd the probability distribution function of  the  

negative binomial random variable Y that describes a sequence  

of  independent trials until we achieve r successes.

5 a X
1
 and X

2
 are independent Binomial variables with the  

same probability p, however they have dierent numbers  

of  repetitions, n
1
 and n

2
 respectively. Use the probability  

generating function to show that X
1
 + X

2
 is a Binomial  

variable and hence nd the parameters.

b Given that
1 2
, , ..., ,

k
X X X k

+

∈ are independent Binomial  

random variables having the same probability p but  

dierent number of  repetitions, n
1
, n

2
, …, n

k
 respectively.  

Use mathematical induction to show that Y X
i

i

k

=
=

∑
1

 is also a 

Binomial distribution and nd the parameters.

 Trafc Analysis is a 

vital component in 

understanding the 

requirements and 

capabilities of a network. 

There are many trafc 

models proposed for 

analyzing the trafc 

characteristics of networks, 

but none of them can 

efciently capture the trafc 

characteristics of all types 

of networks under every 

possible circumstance. 

However, one of the most 

widely used and oldest 

trafc models is the 

Poisson Model.
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Review exercise
EXAM STYLE QUESTIONS

1 A random variable X has a probability generating function 

G t t
t

t
( ) ,= ≠

4

5
5. Find: 

a P(1 ≤ X ≤ 4);

b P(X ≥ 2);

c E(X );

d Var (X ).

2 The times a rabbit, a fox, and a deer arrive at a meadow can be 

modelled by Poisson distributions with parameters 0.6, 0.12, 

and 0.28 respectively. All of  them arrive independently at the 

meadow. Let random variables X, Y, and Z denote the numbers 

of  each of  them at the meadow. 

a Find the probability generating functions of  X, Y, and Z. 

b Find the expected number of  animals at the meadow.

c Find the probability that at least two animals will be at the 

meadow at a given moment.

3 In a certain community, 75% of  volunteers are involved with the 

Peer Helping programme. Students from the school are selected 

at random. What is the probability that:

a i the fourth selected student is the rst one who is involved 

with the programme;

ii the fourth selected student is the second one who is 

involved with the programme;

iii the rst student selected who is involved with the 

programme will not occur before 3rd selected student;

iv to select exactly six students involved with the programme 

we will not need more than 10 selected students?

b What is the expected number of  students needed to be 

selected if  we need six involved in the programme?

4 A continuous random variable X is given by the cumulative 

distribution function

F( )

,

,

,

x

x

x

a

x

x

=

<

≤ ≤

>

⎧

⎨

⎪
⎪

⎩

⎪
⎪

0 0

0

1 2

2
2

2

a Find the positive value of  a

b Hence determine the probability density function.

c What is the modal value of  the variable X ?
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5 A random variable X has a probability generating function 

G t t
t

a bt

a

b
( ) ,= ≠ , where a and b are nonzero integers.

a Show that b = a – 1.

b Hence nd E(X ) in terms of  a

c Show that Var (X ) = a2 – a

6 a X
1
 and X

2
 are independent Poisson variables with the same 

parameter m. Use probability generating functions to show 

that X
1
 + X

2
 is a Poisson variable and nd the parameter.

b Given that X X X n
n1 2

, ,..., , ∈
+

 are independent Poisson 

random variables having the same parameter m, use 

mathematical induction to show that Y X
k

k

n

=
=

∑
1

 is also a 

Poisson distribution with the parameter nm

The French mathematician De Moivre (1667–1754) pioneered 

the development of analytic geometry and the theory 

of probability. In 1711 he published ‘The Doctrine of 

Chances: A Method of Calculating the Probability of Events in 

Play’ which contained his most signicant contribution to this 

area: the approximation to the binomial distribution by the 

normal distribution in the case of a large number of trials. 

De Moivre is famed for predicting the day of his own death. 

He found that he was sleeping 15 minutes longer each night 

and, summing the arithmetic progression, calculated that he 

would die on the day that he slept for 24 hours. He was right!
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Chapter  summary
Cumulative distribution function

 Given the random variable X (discrete or continuous) and the corresponding 

probability function P : [ , ]→ 0 1  the cumulative distribution  

function : [0, 1]F →  is ( ) P( ),F x X x x= ≤ ∈

 For continuous random variables the probability density function f and the  

cumulative distribution function F are related as follows:

( ) ( )( ) ( )
x

F x f x F x f t dt
−∞

′ = ⇔ = ∫

Geometric distribution

 A discrete random variable X is said to have a geometric distribution and we write

Geo( )X p∼  if  P X k q pk=( ) = 1 , where , 0 1, 1 , 1, 2, 3, 4 ...p p q p k∈ ≤ ≤ = − =

Expected value and variance

 Given a geometric random variable, if  Geo( ),X p∼  then E VarX X
p

q

p
( ) ( )= =

1

2
and

Negative binomial distribution

 A discrete random variable X is said to have a negative binomial distribution and we 

write NB( , )X r p∼  if  P X k
k

r
q pk r r=( ) =

⎛

⎝
⎜

⎞

⎠
⎟

1

1
, where 

0 1 1 1 2 3≤ ≤ = − = + + +p q p k r r r r, , , , , ,...

Probability generating function

 Let X be a discrete random variable assuming nonnegative integer values and  

P (X = k) = p
k
, k = 0, , 2, 3, … are the corresponding probabilities. Then the function  

of  the form 2 3

0 1 2 3

0

( ) ... ...k n

k n

k

G t p t p p t p t p t p t
∞

=

= = + + + + + +∑  is called a 

probability generating function. 

Distribution PGF

Bernoulli X ~ B(, p) G (t) = q + pt

Binomial X ~ B(n, p) G t q pt n( ) ( )= +

Poisson X ~ Po(m) G t e
m t( ) =

( )1

Geometric X ~ Geo( p) G t
pt

qt
( ) =

1

Negative binomial X ~ NB(r, p) G (t) = 
pt

qt

r

1 −

⎛

⎝
⎜

⎞

⎠
⎟
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Properties of PGF and Expected value and Variance

i) G () = 

ii) E(X ) = G ′()

iii) Var (X ) = G″() + G ′() (− G ′())

Independent random variables 

 X

 and X

2
 are two independent random variables with the corresponding probability 

generating functions G t G t
X X1 2
( ) ( )and . If  a new random variable X is such that  

X = X

 + X

2
 then G t G t G t G t

X X X X X
( ) ( ) ( ) ( )= = ×

+1 2 1 2
.
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Expectation 
algebra and 
Central Limit 
Theorem

2

CHAPTER OBJECTIVES:

7.2 Linear transformation of a single random variable. 

E E Var Var( ) ( ) , ( ) ( )aX b a X b aX b a X+ = + + =
2

Mean of linear combinations of n random variables. 

Variance of linear combinations of n independent random variables. 

Expectation of the product of independent random variables. =E( ) E( )E( )XY X Y

7.4 A linear combination of independent normal random variables is normally 

distributed. In particular, the Central Limit Theorem.

Before you start

You should know how to: Skills check:

1 Given that B(5, 0.3)X ∼  nd the expected 

value and standard deviation of  X

= ⇒ = × =E( ) E( ) 5 0.3 1.5X np X

σ= ⇒ = × × =Var( ) 5 0.3 0.7 1.02X npq

2 A random variable X has the  

following parameters: 

= = − ∈
2E( ) and Var( ) 2 1,X a X a a .  

Find the value of  a such that the random 

variable follows a Poisson distribution.

The relationship between the expected 

value and the variance of  a Poisson variable 

is =E( ) Var( )X X  therefore we write 

a a a a= − ⇒ − − =2 1 2 1 0
2 2

2
(2 1)( 1) 0a a a =or 1a

1 Given that B( , )X n p∼  with 

= =

3

2
E( ) 2, Var( )X X  nd the following 

probabilities:

a P( )X = 2 ; b P( )1 3≤ ≤X

2 A random variable X has the 

following parameters: 2E( ) 7X a=  and 

Var( ) ,X a a a= − − ∈6 9 23
. Find the 

value of  a such that the random variable 

follows a Poisson distribution.
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Normal distributions and probability models

In probability theory, expected value refers to the value of  a random 

variable one would expect to obtain if  the experiment involving this 

variable could be repeated an endless number of  times. This intuitive 

explanation of  the expected value is a direct consequence of  the  

Law of  Large Numbers, i.e. it is the limit of  the sample mean as the 

sample size approaches innity. This value may not be ‘expected’  

in the English sense of  this word, rather it could even be unlikely, or 

counter-intuitive.

Perhaps some of  the most important concepts in the study of  a  

random variable are expected value and variance. We will investigate 

their algebraic properties in the aspect of  so-called expectation  

algebra. Furthermore, we will be looking at linear combinations of  

independent random variables and how independence aect the 

properties of  the parameters of  such combined random variables.

At the end of  this chapter you will study one of  the most important 

results in mathematics, the Central Limit Theorem, and discover  

the important role that normal distributions have in devising  

probability models. The expected value and variance are important 

parameters in probability distribution, and in statistical topics,  

such as regression analysis, which we will study further in Chapter 4.

 Sometimes, just by 

chance, a few plane 

crashes occur in a short 

period of time. Dramatic 

headlines and impressive 

pictures of debris shown 

in the media may make 

nervous yers feel fearful. 

However, aviation safety 

data reveals a different 

reality and a perhaps 

counter-intuitive truth: air 

travel is the safest it has 

been in the history of 

aviation. The average 

number of ights that 

take off each day is very 

large, and data analysts 

get a very different picture 

of reality given by the 

numbers.
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2.1 Expectation algebra

In statistics, measures of  central tendency (mean, median, etc.)  

and measures of  dispersion (variance, standard deviation, etc.) 

change when the values of  the data these measures represent are 

adjusted. In the core companion we conducted two investigations  

on these changes, and we noted that: 

● If  a constant k is added to each member of  the data set the 

mean value of  the new data set also increased by k;

● If  each member of  the data set is multiplied by a constant k, 

the mean value of  the new data set is k times the original mean;

● If  a constant k is added to each member of  the data set the 

variance of  the new data set doesn’t change;

● If  each member of  the data set is multiplied by a constant k, 

the new variance of  the data is k2 times the original variance.

Since random variables allow us to model random phenomena  

given by sets of  data, we expect that the mean value and variance  

of  the set of  data will behave similarly to the expected value and 

variance of  a random variable.

Linear transformation of a single variable

Example 

Luca and his father play a game. Luca ips a coin. If  he gets a “head” his father  

will give him €.

a Find the expected value and the variance of  the random variable X that describes the 

amount of  money Luca will get in this game.

Luca’s father later decides to award him with €5 if  he obtains a “head”.

b Find the expected value and the variance of  the random variable Y that describes the 

amount of  money Luca will get in this new version of  the game.

c Suggest a relationship between the expected values and the variances of  the  

variables X and Y

a
X x

i
= 0 

P( )X x
i

=

1

2

1

2

=

= ∑
2

1

E( ) i i

i

X x p

= × + × =
1 1 1

2 2 2
E( ) 0 1X

2
2 2

1

Var( ) (E( ))i i

i

X x p X
=

= −∑

Var( )X = + × = − =×
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟0 12 21

2

1

2

1

2

1

2

1

4

1

4

2

Luca gets nothing if  he obtains a “tail” 

and gets €1 if  he obtains a “head”. Draw 

the probability distribution table for the 

variable X and ll in all the values.

Calculate the expected value.

Calculate the variance.

Linear transformation 

of a variable is a 

transformation that is 

obtained by addition 

and multiplication of the 

variable by constants.



Chapter 2 43

b
Y yi= 0 5

P Y yi=( )
1

2

1

2

( ) = × + × =
1 1 5

2 2 2
E 0 5Y

Var Y( ) ×⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= × + = − =0 5

2 1

2

1

2

5

2

25

2

25

4

25

4

2

2

c ( ) ( )E 5EY X=

Var VarY X( ) = ( )25

Luca gets nothing if  he obtains a  

“tail” and gets €5 if  he obtains a “head”. 

Draw the probability distribution table  

for the variable Y and ll in all the  

values.

Calculate the expected value.

Calculate the variance.

By looking at the possible values of   

the variables we notice that 

, ,i iy 5 x i 1 2= =  so we write Y 5X=

Notice that the expected value was 

increased by the same factor and the 

variance was increased by the square of  

the factor.

Now let’s consider another variation of  the game.

Example 

Luca and his father again play a similar game. Luca’s father will give him € if  he obtains 

a “head” but regardless of  the outcome obtained he will give him an extra €2. 

a Find the expected value and the variance of  the random variable Z that describes the 

amount of  money Luca will get in this game.

b Suggest a relationship between the expected values and the variances of  the variables X

(in Example ), and Z

a
Z z

i
= 2 3

( )=P
i

Z z
1

2

1

2

( ) == × + ×
1 1 5

2 2 2
E 2 3Z

( ) ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

×= + × − = − =
2

2 21 1 5 13 25 1

2 2 2 2 4 4
2Var 3Z

b ( ) ( )= = + = +
5 1

2 2
E 2 E 2Z X

Var VarZ X( ) ( )= =
1

4

Luca gets €2 if  he obtains a “tail”  

and gets €3 if  he obtains a “head”. 

Draw the probability distribution table 

for the variable Z and ll in all the 

values.

Calculate the expected value.

Calculate the variance.

We can see that 
i i

z x 2, i 1, 2= + =

so we write Z X 2= + .

Notice that the expected value was 

increased by the same added value 

while the variance remained the same.

Example 3 looks at one last variation of  the game.



Expectation algebra and Central Limit Theorem44

Example 

Luca’s father said that he will give Luca €0 if  he gets a “head” when ipping a coin.

a Find the expected value and the variance of  the random variable R that describes the 

amount of  money Luca will get in the game.

Luca’s father then decides to make it more realistic and introduces a €3 tax whenever Luca 

ips a coin.

b Find the expected value and the variance of  the random variable S that describes the 

amount of  money Luca will get in this variation of  the game.

c Suggest a relationship between the expected values and the variances of  the variables  

R and S

a
R r

i
= 0 0

( )=P
i

R r
1

2

1

2

+ ×= × =
1 1

2 2
10E( ) 0 5R

Var( )R = × + × − = − =
⎛

⎝
⎜

⎞

⎠
⎟0 10 5 50 25 252 1

2

1

2

2 2

b
S s

i
= −3 7

( )=P
i

S s
1

2

1

2

= − × + × =
1 1

2 2
E( ) 3 7 2S

Var ( )S = − × + × − = − =( )⎛
⎝
⎜

⎞
⎠
⎟3 7 2 4 25

2 21

2

1

2

58

2

2

c = = − = −E( ) 2 5 3 E( ) 3S R

= =Var ( ) 25 Var ( )S R

Luca gets nothing if  he obtains a 

“tail” and gets €10 if  he obtains a 

“head”. Draw the probability 

distribution table for the variable R 

and ll in all the values.

Calculate the expected value.

Calculate the variance.

Luca loses €3 if  he obtains a  

“tail” and gets €7 (€10 – €3) if  he  

obtains a “head”. Draw the 

probability distribution table for the 

variable S and ll in all the values.

Calculate the expected value.

Calculate the variance.

We can see that i i
s r 3, i 1, 2= =

so we can write S R 3=

Notice that the expected value was 

reduced by the same value that was 

subtracted from the variable, whilst the 

variance remains the same.

These examples suggest that all the changes from the data  

adjustment are valid for random variables too. The following  

theorem formalizes these results about the parameters of  a  

linear transformation of  a random variable.

Notice that the probability of 

a random variable taking a 

particular outcome remains 

the same when we perform 

a linear transformation on 

the random variable.
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Theorem 1:

Given that X is a random variable with nite parameters  

and ∈,a b , then

i ( ) ( )E EaX b a X b+ = + ;

ii ( ) ( )2
Var VaraX b a X+ =

Proof:

As random variables can be either discrete or continuous, we must  

prove the theorem for both cases:

Case I

Let X be a discrete random variable. Then:

i μ = = = ⇒∑E( ) P( )X x X x

E( ) ( ) P( ) ( P( ) P( ))aX b ax b X x ax X x b X x+ = + = = = + =∑ ∑

= =( ) + =( ) = =( ) + =( )∑∑ ∑ ∑
( )

ax X x b X x a x X x b X x

X

P P P P

E

    
1

 

= +a X bE ( )

( ) 2 2Var E( ) (E ( )) ,E ( )X X X X μ= − =

ii Var P( ) ( )X x X x= = − ⇒∑ 2 2μ

( ) ( )2 2Var P( ) ( )aX b ax b X x a bμ+ = + = − +∑
2 2 2 2 2 2( 2 )P( ) ( 2 )a x axb b X x a a b bμ μ= + + = − + +∑
2 2 2 2 2 2( P( ) 2 P( ) P( )) ( 2 )a x X x axb X x b X x a a b bμ μ= = + = + = − + +∑

( )

2 2 2 2 2 2

1E

P( ) 2 P( ) P( ) ( 2 )

X

a x X x ab x X x b X x a a b bμ μ= = + = + = − + +∑ ∑ ∑ 

( )2 2
P 2= = +∑ 2

b+ 2 2
2− − 2

b−

( )
( )

μ= −⎛ ⎞= =
⎜ ⎟
⎝ ⎠
∑ 2 22 2

Var

P Var( )

X

x X xa a X


Case II Let X be a continuous random variable. Then:

i μ = =E( )X ∫ xf x dx( ) ⇒

( )+ =E aX b ∫( ) ( )ax b f x dx+ = ∫( ( ) ( ))axf x bf x dx a+ =

( )E

( )

X

xf x dx b+
1

( )f x dx∫
( )= +Ea X b
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ii Var X( ) = ∫ x f x dx2 2( ) − ⇒μ

Var( )aX b+ = ∫ ( )
22( ) ( )ax b f x dx a bμ+ − +

= ∫ 2 2 2 2 2 2( 2 ) ( ) ( 2 )a x abx b f x dx a ab bμ μ+ + − + +

= a2 ∫ 2 ( ) 2x f x dx ab+

( )

2

E

( )

X

xf x dx b+∫


2 2 2

1

( ) ( 2 )f x dx a ab bμ μ− + +∫


= a2 ∫
2

+
2

b+
2 2

2− −
2

b

= ( )( )∫
( )

a x f x dx

X

2 2 2μ

Var

  

( )= 2
Vara X

Exercise 2A

1 Given that X is a random variable with the expected value 5.3 and  

variance 1.2, nd the expected value and variance of  the following:

a 3X b X + 3 c 4X + 1 d 2X − 5 e + ∈; ,kX p k p

2 Given that a random variable 
2

5
B 10,X ∼  nd:

a ( )+E 3 2X ; b Var 3 2X( )

3 A random variable Y follows a geometric distribution with the  

parameter p 
2

3
. Find the expected value and variance of  2 1Y

4 Given that a random variable Y ~ Po(2) nd:

a E(3 − 2Y ); b Var 3 2( )Y

5 Given that a random variable 
1

3
NB , 8X ∼  nd:

a ( )E 2 3X ; b Var(2 11)X

6 Given that a random variable ( )B 15,X p∼  and ( )E 6X = ,  

nd Var 5 3X +( )

7 A continuous random variable X has a probability density  

function given by the formula ( )
⎧
⎪
⎨
⎪⎩

≤ ≤
=

1

3
, 0 6

0, otherwise

x x
f x

Find the exact values of  the expected value and variance of  3 2X + .
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So far we were performing a linear transformation of  just one variable. 

Let’s see what happens if  we involve two or more random variables. 

We are going to assume that the variables are independent.

Linear transformation of two or more variables

Example 

Hannah and Luca play a game with their father by ipping a coin. Hannah will get €2 if  

she obtains a “head”, whilst Luca will get €5 if  he obtains a “head”. Random variables  

X and Y represent the amount of  money Hannah and Luca get in this game respectively. 

The random variable Z represents the amount they earn together in this game. 

a Draw the probability distribution table and calculate the expected value and variance of  Z

Their grandmother decides to increase the amount they will get. Hannah will get  

8 times more money than she received from her father, and Luca will get 3 times more 

money than he received from his father. Again they put their money together. 

b Find the probability distribution of  the random variable W that describes the amount of  

money they will earn together this time. Calculate the expected value and variance of  W

c Suggest relationships between the expected values and the variances of  the variables X, 

Y, Z, and W

a
X x

i
= 0 2

P( )
i

X x=

1

2

1

2

( ) ( )E 1, Var 1X X= =

Y yi= 0 5

P( )
i

Y y=

1

2

1

2

( ) ( )
5 25

2 4
, VarE YY ==

Z X Y= +

Z z
i

= 0 2 5 7

P( )
i

Z z=

1

4

1

4

1

4

1

4

( )
1 1 1 1 7

4 4 4 4 2
E 0 2 5 7Z = × + × + × + × =

Var Z( ) ⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= + + +

0

4

2

4

5

4

7

4

7

2

2 2 2 2 2

=  =
78

4

49

4

29

4

Hannah gets nothing if  she obtains a 

“tail” and gets €2 if  she obtains a “head”. 

Draw the probability distribution table for 

the variable X and ll in all the values.

Calculate expected value and variance.

Luca gets nothing if  he obtains a “tail” 

and gets €5 if  he obtains a “head”. Draw 

the probability distribution table for the 

variable Y and ll in all the values.

Calculate expected value and variance.

If  they put the money together then we 

are adding the money they earn.

The values of  Z for the corresponding 

pairs of  outcomes:  

(T, T) → 0 + 0, (H, T) → 2 + 0  

(T, H) → 0 + 5, (H, H) → 2 + 5

Calculate the expected value.

Calculate the variance.
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b W X Y= +8 3

W w
i

= 0 5 6 3

P W w
i

=( )
1

4

1

4

1

4

1

4

( )
1 1 1 1 31

4 4 4 4 2
E 0 15 16 31W = × + × + × + × =

Var X( ) ⎛

⎝
⎜

⎞

⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= + + + −0

4

15

4

16

4

31

4

31

2

2 2 2 2 2

=  =
721

2

961

4

481

4

c ( ) ( ) ( ) ( )E E E EX Y X Y Z+ = + =

Var Var Var VarX Y X Y Z( ) + ( ) = +( ) = ( )

( ) ( ) ( ) ( )8E 3E E 8 3 EX Y X Y W+ = + =

64 9 8 3Var Var Var VarX Y X Y W( ) + ( ) = +( ) = ( )

Again we are adding the money they 

earn. The values of  W for the 

corresponding pairs of  outcomes: 

(T, T) → 0 + 0, (T, H) → 0 + 3 × 5  

(H, T) → 8 × 2 + 0,  

(H, H) → 8 × 2 + 3 × 5

Calculate the expected value.

Calculate the variance.

Notice that 
5 7

2 2
1 + =

Notice that 
25 29

4 4
1+ =

Notice that 
5 31

2 2
8 1 3× + × =

Notice that 
25 481

4 4
64 1 9× + × =

Now let’s take another example, this time with probabilities that are not uniformly distributed.

Example 

Mia and Theo draw marbles from two boxes. Mia draws a marble from the rst box;  

it contains 2 white and 3 black marbles. Theo draws two marbles form the second box;  

it contains 4 white and 3 black marbles. Random variables X and Y represent the number 

of  white marbles Mia and Theo are going to draw, respectively. The random variable Z

represents the number of  white marbles they draw together. 

a Draw the probability distribution tables and calculate the expected value and the 

variance of  all the variables X, Y, and Z

Their grandfather decides to give Mia €3 and Theo €2 for each white marble they draw.

Mia and Theo decide to put the money together. 

b Find the probability distribution of  the random variable W that describes the amount of  

money they earn together, and calculate the expected value and variance of  W

c Suggest a relationship between the expected values and variances of  the variables  

X, Y, Z, and W

a
X x

i
= 0 

P( )
i

X x=

3

5

2

5

( ) ( )
2

2 2 2 6
,

5 5 5 25
E VarX X

⎛ ⎞
⎜ ⎟
⎝ ⎠

−= = =

Mia can draw one black or one white 

marble from the rst box of  marbles. 

Draw the probability distribution table 

for the variable X and ll in all the 

values.

Calculate expected value and variance.
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3 3 4

2 1 11 4

7 77 7

2 2

,P( 0) , P( 1)Y Y

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

== = = = =

P Y = = =( )

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

2

4

2

7

2

2

7

Y yi= 0  2

P Y yi=( )
1

7

4

7

2

7

( ) ( )
2

8 4 8 8 20
,

7 7 7 7 49
E VarY Y

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

= = + − =

Z X Y= +

P Z = = × =( )0
3

5

1

7

3

35

Theo can draw two black marbles or 

one black and one white or  

two white marbles from the second box 

of  marbles.

Draw the probability distribution table 

for the variable Y and ll in all the 

values.

Calculate the expected value and 

variance.

If  they put the marbles together then 

we are actually adding the number of  

marbles they drew. (Z = 0) ↔ (0 + 0)

P Z = = × + × = =( )1
2

5

1

7

3

5

4

7

14

35

2

5

P Z = = × + × = =( )2
2

5

4

7

3

5

2

7

14

35

2

5

P Z = = × =( )3
2

5

2

7

4

35

Z z
i

= 0  2 3

P Z z
i

=( )
3

35

2

5

2

5

4

35

( )
3 2 2 4 54

35 5 5 35 35
1 2E 0 3Z + × + ×= × + × =

Var Z( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= + + +0

2

5

8

5

36

35

54

35

2

=  =
106

35

2916

1225

794

1225

b W X Y= +3 2

W w
i

= 0 2 3 4 5 7

P( )
i

W w=

3

35

12

35

2

35

6

35

8

35

4

35

(Z = 1) ↔ (1 + 0) or (0 + 1)

(Z = 2) ↔ (1 + 1) or (0 + 2)

(Z = 3) ↔ (1 + 2)

Draw the probability distribution table 

for the variable Z and ll in all the 

values.

Calculate the expected value.

Calculate the variance.

This time we are adding the money 

they earn, not the number of  white 

marbles they draw. The values of   

W for the corresponding pairs of  

outcomes:  

0 + 0, 0 + 2, 3 + 0, 0 + 4, 3 + 2, 3 + 4
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( ) = + + + + + =
24 6 24 40 28 122

35 35 35 35 35 35
E 0W

Var X( ) ⎛
⎝
⎜

⎞
⎠
⎟

⎛
⎝
⎜

⎞
⎠
⎟= + + + + + −0

48

35

18

35

96

35

200

35

196

35

122

35

2

558 14,884 4646

35 1225 1225
= =

c ( ) ( ) ( ) ( )+ = + =E E E EX Y X Y Z

( ) ( ) ( ) ( )Var Var Var VarX Y X Y Z+ = + =

( ) ( ) ( ) ( )+ = + =3E 2E E 3 2 EX Y X Y W

9 4 3 2Var Var Var VarX Y X Y W( ) + ( ) = +( ) = ( )

Calculate the expected value.

Calculate the variance.

Notice that 
2 8 54

5 7 35
 =

Notice that 
6 20 794

25 49 1225
=

Notice that 
2 8 122

5 7 35
3 2× + × =

Notice that 
6 20 4646

25 49 1225
9 4× + × =

Examples 4 and 5 demonstrated one very important property for  

the probability of  the sum of  two independent random variables.  

To nd the probability of  the variable Z X Y=   we multiplied  

the corresponding elementary probabilities of  the random variables 

X and Y :

P( ) P( ) P( )Z z X x Y y= = = × =

In the second part of  Examples 4 and 5, we showed that the 

probability of  a variable W (which was a linear combination of  X and 

Y involving real coecients, W = 3X + 2Y ) was simply the product 

of  the probability of  X and Y, and is totally independent of  the 

coecients:

P( ) P( ) P( )W w X x Y y= = = × =

We also demonstrated that the expected value and variance of  linear 

combinations of  multiple random variables behave in the same way 

as the expected value and variance of  linear combinations of  a 

single random variable. We can now state the following theorem.

Theorem 2: 

Given that X and Y are two independent random variables with 

nite parameters and ,a b∈, then:

i E E E( ) ( ) ( )aX bY a X b Y =  ;

ii Var Var( ) Var( )( )aX bY a b = 
2 2

X Y

 E(X) is also called 

the rst moment of 

X. The second moment, 

E(X − X )2 is also called 

the variance of X which 

measures the spread 

and relates to variability, 

volatility, and uncertainty. 

We can also dene the 

nth moment: E(X − X )n

For example, the third 

moment: E(X − X )3 is a 

measure of skewness 

or asymmetry in the 

distribution of X
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Proof:

We are going to prove this theorem for a discrete random variable only:

i 1 2E ( ) P( ), E ( ) P( )
x y

X x X x Y y Y yμ μ= = = = = =∑ ∑

( ) ( )E P(( ) ( ))
x y

aX bY ax by X x Y y⇒ + = + = ∩ =∑

(( )P( )P( ))
x y

ax by X x Y y= + = =∑

( P( )P( ) P( )P( ))
x y

ax X x Y y by X x Y y∑∑

( )

1

P ( P( ))
y x

Y y ax X x= = =∑ ∑


( )

1

P ( P( ))
x y

X x by Y y∑ ∑


( ) ( )E E

P( ) P( )
x y

X Y

a x X x b y Y y= = + =∑ ∑
 

= ( ) + ( )a X b YE E

ii ( ) 2 2

1Var ( P( ))
x

X x X x μ= = −∑

( ) 2 2

2Var ( P( ))
y

Y y Y y μ= = − ⇒∑

2

,

Var ( ) ( ) P(( ) ( ))
x y

aX bY ax by X x Y y+ = + = ∩ =∑

2

1 2( )a bμ μ− +

2 2 2 2

,

(( 2 ) P( ) P( ))
x y

a x axby b y X x Y y= + + = =∑

2 2 2 2

1 1 2 2( 2 )a a b bμ μ μ μ− + +

2 2

1

P( ) ( P( ))
y x

Y y a x X x= = =∑ ∑


1 2

2 ( P( )) ( P( ))
x y

ab x X x y Y y

μ μ

+ = =∑ ∑
 

( ) 2 2

1

P ( P( ))
x y

X x b y Y y+ = =∑ ∑


2 2 2 2

1 1 2 2( 2 )a a b bμ μ μ μ− + +

Since X and Y are 

independent variables 

the probability of  the 

intersection is the 

product of  probabilities.

Use the distributive 

property.

The sum of  all the 

probabilities of  a 

random variable is 

equal to 1.

Use the denition of  the 

expected value.

Since X and Y are 

independent variables, 

the probability of  the 

intersection is the 

product of  probabilities.

Use the distributive 

property.

The sum of  all the 

probabilities of  a 

random variable is 

equal to 1. Recognize 

the expression for the 

expected value.

Reduce opposite terms 

and collect the like terms.
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( )2 2

1 2P 2
x

= = +∑ 2 2( P( ))
y

b y Y y+ =∑

− − −a a b b
2

1

2

1 2

2

2

2
2μ μ μ μ

2 2 2 2 2 2

1 2( ( P( )) ) ( ( P( )) )
x y

a x X x b y Y yμ μ= = − + = −∑ ∑

= ( ) + ( )a X b Y
2 2
Var Var

Use distributive 

property and the 

denition of  the 

variance.

The proof  of  the theorem for a continuous random  

variable is beyond the scope of  this syllabus.

Theorem 2 can now be generalised to give a result for a  

nite number of  random variables.

Theorem 3: 

Given that 1 2 3
, , , ..., ,

n
X X X X n

+

∈  are independent random 

variables with nite parameters and 1 2 3
, , , ...

n
a a a a ∈ then:

i 1 1 2 2 1 1 2 2E ( ... ) E ( ) E( ) ... E ( )
n n n n

a X a X a X a X a X a X+ + + = + + + ;

ii
1 1 2 2

2 2 2

1 1 2 2

Var ( ... )

Var ( ) Var ( ) ... Var ( ).

n n

n n

a X a X a X

a X a X a X

+ + +

= + + +

Using sigma notation we can write:

i

1 1

E E( )
n n

i i i i

i i

a X a X

= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑ ;

ii
2

1 1

Var Var ( )
n n

i i i i

i i

a X a X

= =

⎛ ⎞
=⎜ ⎟

⎝ ⎠
∑ ∑

The proof  of  this theorem for the discrete case can be done by 

mathematical induction and is left as an exercise for students.

Exercise 2B

1 The random variables X, Y, and Z are given with their parameters 

in the table below.

Variable σ
2

X 3 0.5

Y −5 .4

Z 2 2.8

Find the parameters of  the following linear combinations:

a X Y+ b 2Y Z c 2 7Z X

d X Y Z + e X Y Z+  f 3 2 4Z X Y +

Unlike in the calculation  

of expected value, we  

notice that when calculating 

variance it doesn’t matter 

whether the coefcients 

a and b are positive or 

negative; their squares 

are always positive. In 

particular we have to be 

careful that  

E(X ± Y ) = E(X) ± E(Y ) and  

Var (X ± Y) = Var(X) + Var(Y )
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2 Poisson random variables X and Y are such that Var (X ) = 2 and  

E(Y ) = 5. Calculate:

a ( )E 3 5X Y+ ; b Var 11 7Y X( )

3 Binomial random variables X and Y are such that E(X ) = 9 and  

E(Y ) = 4. Given that they have the same probability of  success, p,

nd the variance of  2X − 3Y in terms of  p

4 Negative binomial random variables X and Y are such that E(X ) = 8  

and E(Y ) = 12. Given that they have the same probability of  success, p,

nd the variance of  X − Y in terms of  p

5 Use mathematical induction to prove Theorem 3.

In the manipulation of  random variables we have explored so far, we haven’t 

yet discussed whether a linear combination of  variables which are all 

distributed in the same way (e.g. all have Poisson distribution) will give a 

random variable that is also distributed in this way.

Example 

Given two Poisson random variables 
1 2Po( ) and Po( )X Yμ μ∼ ∼  nd the expected  

value and the variance of  the random variables:

a X Y+

b X Y−

c 4 3X Y−

a ( ) ( ) ( )
1 2

E E EX Y X Y μ μ+ = + = +

Var Var VarX Y X Y+( ) = ( ) + ( ) = +μ μ
1 2

b ( ) ( ) ( )
1 2

E E EX Y X Y μ μ− = − = −

Var Var VarX Y X Y−( ) = ( ) + ( ) = +μ μ
1 2

c ( ) ( ) ( )
1 2

E 4 3 4E 3E 4 3X Y X Y μ μ− = − = −

Var Var Var4 3 4 3
2 2

X Y X Y−( ) = ( ) + −( ) ( )

= +16 9
1 2

μ μ

Both the expected value and variance of  a 

Poisson random variable are equal to the 

parameter. Apply Theorem 2. Notice that the 

expected value of  the random variable X + Y is 

equal to the variance. Hence, we might speculate 

that X + Y could also be Poisson.

Again apply Theorem 2. Notice that the expected 

value of  the random variable X − Y is not equal 

to its variance. Thus, X −Y is not Poisson.

Again apply Theorem 2 and notice that  

the expected value of  the random variable  

4X − 3Y is not equal to its variance. Thus,  

4X − 3Y is not Poisson.

We can conclude that, in general, a linear combination of  two Poisson 

random variables is not a Poisson random variable.



Expectation algebra and Central Limit Theorem54

In a similar situation we ask ourselves what is going to happen if  

two random variables have equal expected values 
1 2
=  and equal 

variances σ σ
1

2

2

2
= . In this case we conduct a slightly dierent 

calculation.

In the following example, we will use the expected value and 

variance of  a random variable X to investigate whether or not we 

can conclude that 2X = X + X

Example 

Mia draws one marble from a box. She notes the colour of  the marble, and then returns it 

back to the box. The box contains 2 white and 3 black marbles. 

a Random variable X represents the number of  white marbles Mia draws.

Find the expected value and the variance of  X. 

b Mia’s uncle says that he will give €2 to Mia for each white marble she draws.  

The random variable Y denotes the amount of  money Mia receives from her uncle.  

Find the expected value and variance of  Y

Mia’s brother, Theo, draws a marble from the same box and notes the colour. He then 

replaces it. Afterwards, Mia draws a marble from the box, notes the colour and replaces it.

c Their aunt says she will give them € for each white marble drawn. The random 

variable Z denotes the amount of  money they will get from their aunt. Find the 

expected value and variance of  Z

d Given that we can write Y X Z X X= = +2  and , what do you notice about the 

parameters of  the variables Y and Z ?

a
X x

i
= 0 

P X x
i

=( )
3

5

2

5

( ) ( )
2

2 2 2 6
,

5 5 5 25
E VarX X

⎛ ⎞
⎜ ⎟
⎝ ⎠

= = − =

b
Y yi= 0 2

P( )
i

Y y=

3

5

2

5

( ) ( )
2

4 8 4 24

5 5 5 25
E , VarX X

⎛ ⎞
⎜ ⎟
⎝ ⎠

= = − =

The probability distribution table for the 

variable X is the same as that in Example 5.

Calculate the expected value and variance.

Draw the probability distribution table for 

the variable Y and ll in the probabilities. 

Calculate the expected value and variance.
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c
Z z

i
= 0  2

P( )
i

Z z=

9

25

12

25

4

25

P Z = = × =( )0
3

5

3

5

9

25

P Z = = × + × =( )1
2

5

3

5

3

5

2

5

12

25

P Z = = × =( )2
2

5

2

5

4

25

( )
3 12 4 20 4

25 25 5 25 5
E 0 1 2Z = × + × + × = =

Var Z( ) ⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟= + + − =0

12

25

16

25

4

5

12

25

2

d ( ) ( )E EY Z=

( ) ( )E 2 EX X X= +

Var Var2X X X( ) ≠ +( )

Draw the probability distribution table  

for the variable Z and ll in all the  

values. We are actually adding the  

number of  marbles they draw.

(Z = 0) ↔ (0 + 0)

(Z = 1) ↔ (1 + 0) or (0 + 1)

(Z = 2) ↔ (1 + 1)

Calculate the expected value and variance.

Notice that Var(Z) = Var(X) + Var(X).

Notice that although X and Z have equal 

expected values, they don’t have equal 

variances. Thus, we conclude that for 

random variables in general 2X X X≠ +

Theorem 4 will generalize the conclusion we reached in Example 7:

Theorem 4:

Given that independent random variables 1 2 3
, , , ..., ,

n
X X X X n

+

∈

all have equal expected value and equal variance ( ) ( ) 2
E  and VarX Xμ σ= = , then:

1 2 1 2

 terms

E ( ... ) E( ) E( ) ... E ( ) ...
n n

n

X X X X X X n+ + + = + + + = + + + =
 ;

and

2 2 2 2

1 2 1 2

 terms

Var ( ... ) Var ( ) Var ( ) ... Var ( ) ...
n n

n

X X X X X X nσ σ σ σ+ + + = + + + = + + + =

When adding n random variables which have the same expected value, the 

expectation of  the sum (X

 + X

2
 + ... + X

n
) is equal to  

the expectation of  the variable multiplied by n, (nX ), i.e. 

1 2E( ... ) E( )
n

X X X nX+ + + = . The variance of  the sum is not equal to the 

variance in the case of  a linear transformation of  a random variable,

2 2 2

1 2Var ( ... ) Var ( )
n

X X X n n nXσ σ+ + + = ≠ = .

Therefore, by comparing parameters, we conclude that for a random variable X:

X X X nX

n

+ + + ≠... .

 terms
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Example 8

Anna and Sarah are independently drawing counters from two dierent boxes.  

Anna’s box contains the counters , 2, 3, 4, and 5. Sarah’s box contains the counters  

, , , 2, 2, and 3. Let random variables X and Y represent the value of  the counters  

drawn by Anna and Sarah respectively.

a Draw the probability distribution tables and nd the expected values of  the  

variables X and Y

Anna’s father is going to give Anna as much money as the value of  her drawn counter 

multiplied by the value of  Sarah’s drawn counter. Let random variable Z represent the 

amount of  money Anna will earn in this game.

b Draw the probability distribution table and nd the expected value of  the variable Z

c Suggest a relationship between the variables X, Y, and Z

a
X x

i
=  2 3 4 5

P( )
i

X x=

1

5

1

5

1

5

1

5

1

5

( ) ( )
1 1

5 5
E 1 2 3 4 5 15 3X ×= + + + + = × =

Y yi=  2 3

P( )
i

Y y=

1

2

1

3

1

6

( )
1 1 1 5

2 3 6 3
E 1 2 3Y = × + × + × =

b
Z z

i
=  2 3 4 5

P( )
i

Z z=

1

10

1

6

2

15

1

6

1

10

6 8 9 0 2 5

1

10

1

15

1

30

1

15

1

30

1

30

Notice that X follows a uniform distribution 

since we have one counter in each value.

Calculate the expected value.

There are only three dierent values on the 

counters and there are 3 out of  6 counters with the 

value “1”, 2 out of  6 counters with the value “2” 

and only 1 out of  6 counters with the value “3”.

Calculate the expected value.

We need to look at all the possible pairs and 

their products. There are altogether 11 pairs of  

outcomes and since the drawings are 

independent for each of  them we have to 

multiply their probabilities. Some of  the pairs 

give the same product so we have to add their 

probabilities. For example:
1 1 1

5 2 10
( )1 : 1, 1 × =→
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*Unsaved 

A B C D

1

2

3

4

5

1

2

3

4

5

1/10

1/6

2/15

1/6

1/10

5

C1 =mean(a1:a11, b1:b11)

1.1

( )E 5Z =

c Z XY=

( ) ( ) ( ) ( )E E E EZ XY X Y= = ×

1 1 1 1 1

5 3 5 2 6
2 : (1, 2) or (2, 1) =× + ×→

1 1 1 1 2

5 6 5 2 15
3 : (1, 3) or (3, 1) + =× ×→

1 1 1 1 1

5 3 5 2 6
4 : (2, 2) or (4, 1) × + × =→

To simplify the calculation for expectation we 

can use a GDC.

Notice that 
5

35
3

= ×

Exercise 2C

1 Six unbiased coins are independently ipped and the number of  

heads obtained is recorded.

a Let variable X denote the outcome of  one such coin ip. Write 

the probability distribution table and nd the expected value and 

variance of  the variable X

b Explain why the whole experiment can be written as 

Y X X X X X X= + + + + + , where Y is a random variable 

representing the outcome of  ipping six coins.

c Find the expected value and variance of  the random variable Y

d Use the empirical rule to determine all possible outcomes of  Y, 

and comment on these outcomes.

2 An unbiased die is rolled four times, and the number of  multiples of  

3 obtained is recorded. 

a Let variable X denote the outcomes for one roll of  the die. Write 

the probability distribution table and nd the expected value and 

variance of  the variable X

b Explain why the whole experiment can be written as 

Y X X X X= + + + , where Y is a random variable representing 

rolling the die four times.

c Find the expected value and variance of  the random variable Y

3 Random variable X has the parameters = =3 4
2

and .

a Find the expected value and variance of  X + X + X.

b Find the expected value and variance of  3X.

c Show that Var VarX X X X X+ + +( ) ≠ ( )3 6 .
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4 Random variables X and Y have the parameters 

X X Y Y
= = = =2 1 5 3

2 2
, ,and . 

Find the expected value and variance of

a X + X + X + X + X;

b Y + Y + Y;

c X + X + X + X + X + Y + Y + Y

5 Shariza is rolling a regular tetrahedral die with faces 1, 2, 3, and  

4 and Shikma is independently rolling a biased die with faces  

1, 1, 1, 2, 2, and 3 respectively. Let random variables X and Y

represent the values of  the outcomes obtained by Shariza and 

Shikma respectively.

a Draw the probability distribution tables and nd the expected 

values of  the variables X and Y

Their friend is going to give them as many concert tickets as the 

product of  the faces obtained. Let random variable Z represent  

the number of  concert tickets Shariza and Shikma are going to 

earn in this game.

b Draw the probability distribution table and nd the expected 

value of  the variable Z and comment on your result.

6 Independent random variables X and Y have the expected values 

 and  + 2 respectively. Given that ( ) 3
E XY μ=  nd all possible 

non-zero values of  μ

A linear combination of independent normal random variables

In this section we are going to look at the particular case of  a normal 

random variable. We start with a corollary that is a consequence of  

Theorem 2. 

Corollary to Theorem 2:

If  we take two independent normal random variables 
2 2

1 1 2 2N( , ) and N( , )X Yμ σ μ σ∼ ∼ , then the linear  

combination , ,aX bY a b+ ∈ is a normally distributed variable. 

The expected value and variance of  aX + bY are 
2 2 2 2 2

1 2 1 2
 and a b a bμ μ μ σ σ σ= + = + , so we can write 

2 2 2 2

1 2 1 2N( , )aX bY a b a bμ μ σ σ+ + +∼

Coefcients a and b

cannot both be equal 

to 0 (we write this 

condition as a2 + b2 ≠ 0).
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Example 9

Given the normal random variables ( ) ( )N 3, 0.25  and N 4, 0.64X Y∼ ∼ , nd the 

probabilities of  the following:

a X Y+ > 8;

b Y X  0 5;

c 3 2X Y<

a ( ) ( )N 3 4, 0.25 0.64 N 7, 0.89X Y+ + + =∼

( )+ > =P 8 0.145X Y

b ( ) ( )N 4 3, 0.64 0.25 N 1, 0.89Y X− − + =∼

P Y X− ≤( ) =0 5 0 298. .

c 3 2 3 2 0X Y X Y< ⇒ − <

( )2 2
3 2 N 3 3 2 4, 3 0.25 2 0.64X Y− × − × × + ×∼

( )N 1, 4.97=

P 3 2 0 0 327X Y− <( ) =

3/99

Scratchpad  

0.144573normCdf(8, 100, 7, √0.89)

0.298056normCdf(–100, 0.5, 1, √0.89)

0.326874normCdf(–100, 0, 1, √4.97)

Apply the theorem above and calculate the 

probabilities by using a GDC.

Notice that in part a the upper boundary is 00 and in parts b and c the 

lower boundaries are −00 which are sucient values that represent 

+∞ and −∞ respectively.



Expectation algebra and Central Limit Theorem60

Example 0

There are two classes at a school. One class studies the Mathematics Higher Level (HL) 

course, whilst the other class studies the Mathematics Standard Level (SL) course. The 

nal grades of  both classes are distributed normally, with the HL class having a mean of  

5.2 and standard deviation of  .37, whilst the SL class has a mean of  4.8 and standard 

deviation of  .85. The HL class claims that they have obtained a better result than the SL 

class. Find the probability that this statement is true.

2N(5.2, 1.37 )X ∼

2N(4.8, 1.85 )Y ∼

X Y X Y> ⇒ − > 0

2 2N(5.2 4.8, 1.37 1.85 )X Y− − +∼

N(0.4, 5.2294)=

P X Y− >( ) =0 0 569

Since the probability is greater than 0.5 we can 

conclude that the HL class have obtained a better 

result than the SL class.

Denote the HL and SL classes by the 

random variables X and Y respectively. 

Find the parameters of  the dierence of  

two random variables. 

1/99

Scratchpad  

0.569428normCdf(0, 100, 0.4, √5.2294)

The corollary to Theorem 3 can now be generalized for n independent  

normal random variables.

Corollary to Theorem 3: 

If  we take n independent normal random variables 
2 2 2

1 1 1 2 2 2( , ), ( , ), ..., ( , ),
n n n

X N X N X N nμ σ μ σ μ σ
+

∈   

then the linear combination of  
2

1 1 2 2

1 1

... , , 0
n n

n n k k k k

k k

a X a X a X a X a a

= =

+ + + = ∈ ≠∑ ∑

is also a normal variable. The parameters are 
2 2 2

1 1

 and 

n n

k k k k

k k

a aμ μ σ σ
= =

= =∑ ∑ ,  

so we can write 
2 2

1 1 1

,
n n n

k k k k k k

k k k

a X N a aμ σ
= = =

∑ ∑ ∑∼

The proof  of  this theorem can be done by mathematical induction.  

It is left as an exercise for the student.
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Example 

Given the following normal random variables X Y∼ ∼N N( , . ), ( , . )2 2 25 4 1 44 ,

Z ∼N( , . )3 0 4 , and W ∼N( . , . )0 5 0 64  calculate the following:

a P X Y Z− − >( )0 ;

b P 2 4 0X Z W− − <( );

c P 2 3X Y W Z+ > − −( );

d P X Y W Y+ < −( )3 2

a X Y Z− − − + + +∼N( , . . . )2 4 3 2 25 1 44 0 4

= N( , . )1 4 09

P X Y Z+ + >( ) =0 0 690

b 2 4X Z W− −

∼N( ( ) . , . . . )2 2 3 4 0 5 4 2 25 0 4 16 0 64× − − − × × + + ×

= N( , . )5 19 64

P 2 4 0 0 130X Z W− − <( ) =

c P P2 3 2 3 0X Y Z W X Y Z W+ > − −( ) = + + + >( )

2 3X Y Z W  

∼N( . , . . . . )4 4 9 0 5 4 2 25 1 44 9 0 4 0 64+ − + × + + × +

 −N( . , . )0 5 14 68

P 2 3 0 448X Y Z W+ > − −( ) =

d P PX Y W Y X Y W Y+ < −( ) = + − + <( )3 2 3 2 0

X Y W Y+ − +3 2

∼N( , . . . . )2 12 1 4 2 25 9 1 44 4 0 64 1 44+ − + + × + × +

= N( , . )17 19 21

P X Y W Y+ < −( ) =3 2 0 0000525

4/99

Scratchpad  

0.689512normCdf(0, 100, 1, 4.09)

0.129611normCdf(–100, 0, 5, √19.64)

0.448086normCdf(0, 100, –0.5, √14.68)

0.000053normCdf(–100, 0, 17, √19.21)

Find the mean and variance of  

the new variable and use a GDC 

to nd the probability.

Find the mean and variance of  

the new variable and use a GDC 

to nd the probability.

Rewrite the inequality so that we 

have one random variable and 

then nd the mean and variance 

of  the new variable. Use a GDC 

to nd the probability.

Notice that we haven’t simplied 

the expression because, for random 

variables, 3 4Y Y Y+ ≠  since the 

values of  the variances of  3Y + Y 

and 4Y are dierent.
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Example 

Bill, Jill, and John are going to a steakhouse. There are three types of  steak dishes they can 

order: X-large, Large, and Small. The weights of  all the steaks are distributed normally and 

the parameters are given in the following table.

Steak Average weight Standard deviation

X-Large 430g 30g

Large 35g 22g

Small 50g 8g

Bill orders one X-Large steak, Jill orders one Large steak and John orders one Small steak. 

Find the probability that Bill will get a heavier steak than Jill’s and John’s steaks put together.

X L S∼ ∼ ∼N N N( , ), ( , ), ( , )430 30 315 22 150 82 2 2

P PX L S L S X> +( ) = + − <( )0

L S X+ − + − + +∼N( , )315 150 430 22 8 302 2 2

= N( , )35 1448

P L S X+ − <( ) =0 0 179

Denote the weights of  X-large, Large, and 

Small steaks by random variables X, L, 

and S respectively. 

Rewrite the inequality in a simpler form 

and construct a new variable. Find the 

parameters of  the new variable.

Scratchpad  

0.178844|normCdf(–1000, 0, 35, 1448)

Example 

Every day two wrestlers Kenji and Kazuyoshi go for a snack at a pizza place. Kenji always 

orders one Large pizza and Kazuyoshi orders one Jumbo pizza. Since Kazuyoshi needs 

more time to nish his pizza, Kenji gets hungry again and orders one small pizza. 

The weights of  all sizes of  pizza are normally distributed. Large pizzas have a mean of  

900g and a variance of  25g2, and Jumbo pizzas are .5 times the weight of  Large pizzas. 

Small pizzas have a mean of  440g and a variance of  0g2.

a Find the mean and the variance of  the weights of  Jumbo pizzas.

b Find the probability that on a given day Kenji will eat more pizza by weight than 

Kazuyoshi. 

c Find the probability that Kenji will eat more pizza by weight than Kazuyoshi during  

a three day period.
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a Let L, J, and S represent the random variables of  

the weights of  Large, Jumbo, and Small pizzas.

J L J= × ⇒ × ×1 5 1 5 900 1 5 252. ( . , . )∼N

= N( , . )1350 56 25

b D L S J= + − ⇒

D ∼N( . , . )900 440 1 5 900 25 10 1 5 252
+ − × + + ×

= −N( , . )10 91 25

P D >( ) =0 0 148

c X D D D= + + ⇒

X ∼N N( , . ) ( , . )3 10 3 91 25 30 273 75×− × = −

P X >( ) =0 0 0349

Use the formulas:

E(aX) E(X)

Var(aX) Var(X)

=

=

a

a2

Let D represent the daily dierence 

between the weight of  pizza that Kenji 

and Kazuyoshi eat. Use a GDC to  

nd the probability that D > 0.

Let X represent the dierence between 

the weights during a three day period. 

Scratchpad  

0.147585normCdf(0, 1000, –10, 91.25)

0.034901
normCdf(0, 1000, –30, √273.75)

Exercise 2D

1 Given the following independent normal random variables  

X Y∼ ∼N N( , ), ( , . )0 1 1 0 16 , Z ∼N( , . )2 0 25 , and W ∼N( , . )3 1 21

calculate the following:

a P Y Z W− − <( )0 b P X Y Z W   ( )0

c P( )3X Y Z W   d P( )X Z Y W  3 2

e P( )X Z X Z−  −4 3 2 f P( )W Y Y W  2 3

2 A market stall sells beetroot and sweet potato. The weights, in grams,  

are assumed to be normally distributed and the mean values and  

standard deviations are given in the table below.

Mean Standard deviation

Beetroot 240g 20g

Sweet potato 730g 50g

a Find the probability that the weight of  a randomly chosen  

sweet potato is more than three times the weight of  a randomly  

chosen beetroot.

b Find the probability that the weight of  two randomly chosen sweet  

potatoes and four randomly chosen beetroots will exceed 2.5kg.
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3 Lillian and Veronica live in the same building and work at 

the same hospital. Lillian always takes a tram and a bus but 

Veronica walks and takes the tube. The times taken to travel 

to the hospital are assumed to be normally distributed and 

independent of  each other. In the table below are the mean 

values and standard deviations of  these times in minutes.

Mean Standard deviation

Lillian 35 5

Veronica 45 8

a Find the probability that on a given day Lillian will take 

less than 30 minutes to get to the hospital.

b Given that Veronica works ve days a week, nd the 

probability that within a week she will spend more than 4 

hours travelling to work (not including her journey home 

again).

c Find the probability that, on a given day, four times 

the time taken by Lillian to get to the hospital is more 

than three times the time taken by Veronica to get to the 

hospital.

4 Dominic grows apples on his farm. It may be assumed that 

weights of  the apples are normally distributed with a mean 

of  255 grams and a standard deviation of  12 grams.

a Find the probability that a randomly chosen apple weighs 

more than 250 grams. 

b Four of  these apples are selected at random. Find the 

probability that the total weight of  the four apples is 

greater than 1 kilogram. 

Dominic also grows plums. It may be assumed that weights 

of  the plums are normally distributed with a mean of  60 

grams and a standard deviation of  2 grams. 

c Find the probability that the weight of  a randomly chosen 

apple is more than four times the weight of  a randomly 

chosen plum.

d Find the probability that the weight of  a randomly chosen 

apple is more than the weight of  four randomly chosen 

plums.

2.2 Sampling distribution of the mean

In the core course we studied population and samples. We said 

that a population includes all the members of  a dened group 

and a sample is just a representative selection or subset of  the 

population. In order to be able to predict something about the 

Statistical sampling is 

very important for 

researchers in many 

disciplines; in order to draw 

conclusions for the entire 

population in a study they 

may have to select a small 

sample from the population. 

The main concern of these 

researchers is the 

representativeness of the 

sample: if it is not 

representative of the 

population then meaningful 

conclusions cannot be 

drawn, since the results 

obtained from the sample 

will be different from the 

results if the entire 

population were to be tested. 

However, when it comes to 

selecting the type of 

sampling technique, 

researchers must take in 

account other factors such 

as the duration of the study, 

ethical concerns and 

resources available.
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population from a sample we need to have a random sample. A random sample  

is a sample where every element of  the population has an equal opportunity  

to be selected to be part of  the sample. 

We are going to develop some ideas of  sampling from a population.  

The study of  normal probability distribution plays an important role  

in the theory of  sampling, as it has a lot of  practical applications.

For example, suppose a manufacturer of  nails decides to check for 

irregular nails. The process of  checking nails is not a simple one, since it 

would be very impractical to weigh all the nails individually, and 

there is a considerable variation in the weights of  manufactured nails. 

The manufacturer needs to decide what weight range is acceptable.

To consider whether the entire population of  nails are generally within the correct 

weight range, the manufacturer can take a sample. Taking a sample of  a certain xed 

size from a large population doesn’t change the mean and the standard deviation of  

the population. The sample is taken independently, so we can consider the weights of  

nails in the sample to be independent normal random variables. However, what is the 

mean and standard deviation of  weights of  nails in the sample?

Let’s remind ourselves what we have learned so far in the study of expectation algebra. 

If  we have independent random variables X X X N n
n1 2

2, , ..., ( , ), μ σ ∈
+
, then

E VarX n X n
i

i

n

i

i

n

= =
∑ ∑⎛

⎝
⎜

⎞

⎠
⎟ =

⎛

⎝
⎜

⎞

⎠
⎟ =

1 1

2μ σ and 

Now, however, we’ll consider a variable X− which is an independent normal  

random variable within a random sample of  size k, where k ≤ n.  

We’ll look at the sample mean and its parameters.

i E E EX X n

X

n n n

i

i

n

i

n

i
( )

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ⎛

⎝
⎜

⎞

⎠
⎟= = = × ==

=

∑
∑1

1

1 1 μ μ

ii Var Var VarX n

X

n n
X

n n

i

i

n

i

i

n

( )
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ ⎛

⎝
⎜

⎞

⎠
⎟= = = × ==

=

∑
∑1

2

1

2

2

2
1 1 σ σ

If  the population variance is σ 2 and samples of  size n are taken, then the 

distribution of  the sample mean of  these samples will have the same mean  

value  as the population and the variance 
σ

2

n

X X
n

∼ ∼N N( , ) ,μ σ μ σ2
2

⇒
⎛

⎝
⎜

The term standard error is used to describe the quantity 
σ

n

 , which is the average 

distance from the mean that each random variable within the sample of  size n will 

lie. By looking at the formula we notice that the larger the sample we take the 

smaller the standard error we obtain. 
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Example 

The weight of  trout in a sh farm may be assumed to be normally distributed with  

a mean of  340g and a standard deviation of  30g. 

a Find the probability that a catch of  0 trout will have a mean weight per sh of   

more than 370g.

b The hand net can hold up to 7kg. Find the probability that we will be able to  

catch 20 trout in the hand net without breaking it.

a X ∼N( , )340 302
⇒

X ∼N N340 340
30

10

30

10

2 2

, ,
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜=

P X >( ) =370 0 000783

b Method I

Y ∼N 340
30

20

2

,
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

P PY Y< = < =⎛
⎝
⎜

⎞
⎠
⎟ ( )7000

20
350 0 932

Method II

Y T Y∼N 340 20
30

20

2

,
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ ⇒ =

⇒T ∼N( , ( ) )6800 30 20 2

⇒ <( ) =P T 7000 0 932

Use the formula for nding the mean and 

standard error of  the sample distribution.

1/99

Scratchpad  

0.000783

normCdf )  30

√10
370, 1000, 340,(

Use the GDC to nd the solution.

2/99

0.931981

0.931981

normCdf )  30

√20
–100, 350, 340,(

normCdf(–100, 7000, 6800, 30 •√20)

*Unsaved 

Example 

In a nail factory, the weights of  all manufactured nails follow a normal distribution with a 

mean value of  8.2g and a standard deviation of  0.02g. Suppose that a control scale weighs 

4 nails and the mean weight is recorded.

a Find the parameters of  the sample mean distribution.

b By using the empirical rule, nd the interval of  weights that would be acceptable for all 

the samples of  4 nails.

a X ∼N( . , . )8 2 0 022
⇒

X ∼N N8 2 8 2
0 02

4

0 02

2

2 2

. , . ,
. .⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜=

b 8 2 3 0 01 8 2 0 03. . . .± × = ±

We accept all the samples of  4 nails that have 

a mean weight between 8.7g and 8.23g.

Use the formula for nding the mean and 

standard error of  the sample distribution.

Find the values which are 3 standard 

deviations above and below the mean.
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The empirical rule in statistics states that almost all (99.7%) the observations 

fall within the range of three standard deviations from the mean value.

Example 

Manufactured screws follow a normal distribution with a mean length of  3cm and a 

variance of  0.04cm2. What sample size should be taken to be 99% certain that the mean of  

the sample will lie within 0.cm of  the population mean length?

X ∼N( , . )3 0 042
⇒

X
n n

∼N N3 3
0 04 0 2

2

, ,
. .⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜=

P( . . ) .2 9 3 1 0 99≤ ≤ =X

Method I

P
2 9 3

0 2

3 1 3

0 2
0 99≤ ≤

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=

n

Z

n

Use the formula for nding the mean and 

standard error of  the sample distribution.

Transform the variable into the standard 

normal variable by Z
X

=
μ

σ

Notice that the boundaries are symmetrical 

about the mean value so we can apply the 

property of  the standard normal curve.

P Z
n

≤
⎛

⎝
⎜

⎞

⎠
⎟ =

0 1

0 2
0 995

n

2

1
0 995= ( )Φ

n n= × ⇒ =2 2 57583 5 15166. .

n = = ≈5 15166 26 5396 27
2

. .

Scratchpad  

5

0.5

0

–1

1

10 15 20 25 30

x

y

(26.5, 0)

f1(x)=normCdf )–0.99(2.9, 3.1, 3,
0.2

√x

n = 27

P( ) 1 P( ) 1
2

− < < − ⇒ < −a Z a Z a= =α
α

Apply the inverse function.

Notice that the sample size must be a positive 

integer value therefore we round it to 27.

Find the solution by using the function 

features on your GDC.
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Exercise 2E

1 Given that X ∼N( , )μ σ
2  and the sample size n is taken from the 

population, nd:

a P 1 3≤ ≤( )X  if  = = =1 5 4 10. , ,
2

n ;

b P(| 5 3)X − ≤  if  = = =5 9 7, ,
2

n ;

c P(| | 0.8)X ≥  if  = − = =0 2 8 11. , ,
2

n

2 Sleeping habits of  students at a university are found to be  

distributed normally with the mean value of  5.5 hours and the 

standard deviation of  1.2 hours. 15 students from the university 

were selected at random. Find the probability that on average they 

sleep less than 5 hours.

3 A random sample of  size 5 is taken from the normal distribution 

with the mean value 35 and the standard deviation 6. 

a Find P X ≥( )37

b Find the probability that the total sample value is more than 180.

4 The weights of  buyers in a large shopping centre are distributed 

normally with the mean value of  62.5kg and the standard deviation 

of  18.5kg. 

An elevator has a label that states a maximum load of  800kg.

a Find the probability that an average weight of  a randomly 

selected group of  12 people will not exceed 70kg.

b Calculate the probability that the total weight of  the randomly 

selected group of  12 people will not exceed the maximum load 

of  the elevator.

2.3 The Central Limit Theorem

Throughout history many mathematicians have worked on the Central 

Limit Theorem (CLT), one of the most important theorems in all of 

mathematics. The rst mathematician to write about it was Abraham 

de Moivre. Almost a century later Pierre-Simon Laplace published it and 

extended de Moivre’s work. During this period Cauchy, Dirichlet, Poisson, and 

Bessel made important contributions. Later on, George Pólya named the 

theorem “central” due to the importance of the CLT in probability theory. Along 

with Pólya, other mathematicians including von Mises, Lindeberg, and Lévy 

were working on the CLT. Finally, contributions by Chebyshev, Markov, and 

Lyapunov led to the rst publication of the CLT in a general setting.
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So far we have been taking samples only from normal populations. This time 

let’s take an example that doesn’t follow a normal distribution. Using a 

spreadsheet, we have simulated throwing a tetrahedral die four times, and then 

calculated the mean value of  the four throws. We have performed 0 repetitions 

of  a set of  four throws (shown in column A below), and have calculated the 

mean of  each set of  4 throws (shown in column B below). We have then 

repeated the process ve more times (shown in columns D − Q).
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mean=
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mean=
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A B D E G H J K M N P Q

We know that a random variable X that describes the outcomes when  

throwing a tetrahedral die has the following probability distribution.

X x
i

=  2 3 4

P( )X x
i

=

1

4

1

4

1

4

1

4

We can see that E X( ) ( )= + + + = =
1

4

5

2
1 2 3 4 2 5 and

Var X( ) ( ) ⎛
⎝
⎜

⎞
⎠
⎟= + + + − = ⇒ = =

1

4

5

2

5

4

5

2
1 4 9 16 1 12

2

σ

In each repetition of  four throws we notice that the sample mean values  

are in the range [ . , . ]2 175 2 675  and the standard deviation values are  

in the range [ . , . ]0 317324 0 643342 . The mean values of  the sample mean  

group themselves around the expected value of  X, which is 2.5, while  

the standard deviation of  X, which is .2, is not even in the range  

of  the sample mean standard deviations.

We also notice that the standard error is n
n

= ⇒ = =4 0 559017
1 118033989

2

σ .
.

and this value is in the obtained range [ . , . ]0 317324 0 643342 .
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We are going to repeat the simulation for the sample size of  n n= =10 50 and .  

We can see the results in the two spreadsheets below.

n = 10:

A

79 1

3

4

2

4

3

4

4

1

4

1

2

2

4

3

1

2

2

1

1

4

2

mean=

s.d.=

2,6

2,9

2,2

2,53

0,275076

2,4

2,7

2,7

2,56

0,359629

3

1,7

2,7

2,46

0,392145

2,8

2

2,4

2,54

0,440202

2,7

2,3

2,8

2,62

0,285968

2,8

2,8

2,3

2,44

0,295146

4

1

1

2

3

3

2

4

3

4

2

3

2

2

4

1

4

4

4

1

4

1

mean=

s.d.=

3

3

2

4

2

1

2

2

1

1

1

1

4

3

4

1

3
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3
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2

2

mean=

s.d.=
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2
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2
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2
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In each repetition of  ten throws, notice that the sample mean  

lies within a range of  [2.44, 2.62]. This is narrower than the range of  the  

sample mean for repetitions of  four throws. The standard error is

n

n

= ⇒ = =10 0 35355
1 118033989

10

σ
, which is in the range of   

the standard deviations. [ . , . ]0 275076 0 440202 . 

n = 50:

A

481 4

1

2

2

2

1

3

1

1

1

1

2

4

2

3

3

4

2

1

1

mean=

s.d.=

2,28

2,514

0,224707 0,100311

2,34

2,442

0,114095

2,5

2,508

0,154402

2,42

2,444
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2,46

2,516

0,116924

4
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3
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3

2 2,4
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4

3

2

1

1
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4

3

1

3

4

2

1

1

2

1
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4

2

3

3

3

3

4
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4

2

2

1

4

3

1

3
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1

4
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498
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B D E G H J K M N P Q
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In each repetition of  50 throws notice that the sample mean  

lies within an even narrower range [ . , . ]2 442 2 552  than the range of  the  

sample mean for repetitions of  four throws or ten throws. The standard  

error for n = 50 is given by n
n

= ⇒ = =50 0 15811
1 118033989

50

σ
,  

which is in the range of  the standard deviations [ . , . ]0 100311 0 224707 . 

Our conclusion is that the larger the number of  samples we take,  

the closer the parameters of  the sample mean are getting to the  

population mean and the standard error.

X is a random variable with the parameters E VarX X( ) = ( ) =μ σ and 
2.  

Then as n →∞ the sample mean distribution approaches the normal  

distribution X
n

∼N μ
σ

,
2⎛

⎝
⎜

This is one of the most important and also most amazing facts in mathematics. Suppose we take 

any probability distribution (discrete or continuous) and take from it a sample of size n (n must 

be a large number). After taking a large number of those samples we look at the statistical 

characteristics of  the means of all the samples taken. We should notice the following results:

● The mean of  the samples is very close to the mean of  the population that we took the 

samples from.

● The standard deviation of  the samples is proportional to the standard deviation of  the 

population divided by the factor that is close to the value of  the square root of  the 

sample size n, the standard error.

● With a large number of  samples of  size n, the distribution of  the means of  each sample 

can be better approximated by a normal distribution.

10 2 3 4 5

1

2

n = 50

n = 10

n = 4

3
y

x

f(x)

Theorem 5: The Central Limit Theorem

When sampling from any population X with the nite parameters 

 and 
2, the distribution of  the sample mean X  is approximately 

Normal if  the sample size n is large enough. The mean of  the 

distribution of  the sample mean is equal to the population mean 

and the variance of  the distribution of  the sample mean is the 

variance of  the parent population divided by the sample size, 

X N
n

∼ μ
σ

,
2⎛

⎝
⎜

The simulation of the 

sampling distribution 

process and the 

Central Limit Theorem 

can be found at 

http://onlinestatbook.

com/stat_sim/

sampling_dist/

This website has 

both predened 

uniform, normal, and 

skewed distributions, 

in addition to the 

capacity for students 

to create their own 

distributions, by 

graphing a probability 

distribution function 

and then applying the 

process of sampling 

distribution on it.
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When we say “any population” we mean that we are not going to 

restrict ourselves to taking samples from a certain type of  

population such as a normal distributed population. 

Example 

From medical data collected in a school over a number of  years, we can say that  

girls of  age 5 who live in a large town have a mean height of  66cm and a standard 

deviation of  6cm. There are two sports teams made up of  5 girls and 8 girls within that  

age group.

a Find the probability that the mean height of  the team with 5 girls is between  

65 and 72cm.

b Find the probability that the mean height of  the team with 8 girls is between  

65 and 72cm. 

c What can you conclude about those two teams?

a X ∼N 166
6

5

2

,
⎛

⎝
⎜

P 165 172 0 633≤ ≤( ) =X

b X ∼N 166
6

8

2

,
⎛

⎝
⎜

P( ) .165 172 0 679≤ ≤ =X

c With more members in a team, there is a 

higher probability that the team’s mean 

height is closer to the mean height of  the 

overall population of  girls.

Find the parameters of  the sample mean.

Use a GDC to calculate the probability.

Find the parameters of  the sample mean.

Scratchpad  

0.632632
normCdf

6 )165, 172, 166,( √5

0.678985
normCdf

6 )165, 172, 166,( √8

Notice that if  we have more members of  a 

team then we get a larger probability over 

the same interval of  heights.

To help assess a child’s development, doctors use 

percentile growth charts to compare a child’s height 

and weight to other children of the same age. Growth 

charts consist of a series of percentile curves that 

illustrate the distribution of selected body measurements 

in children. This valuable tool can help doctors determine 

whether a child is growing at an appropriate rate or 

whether there might be problems.
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Example 8

A population with the parameters = =2 1 and 
2  is given. We take a sample of  a size n

from the population.

a Find the probability P( . . )1 5 2 5≤ ≤X  given that n = 20.

b Find the minimum sample size n such that P( . . )1 5 2 5≤ ≤X  is at least 0.9.

a X ∼N 2
1

20
,

⎛

⎝
⎜

P( . . ) .1 5 2 5 0 975≤ ≤ =X

b X
n

∼N 2
1

,
⎛

⎝
⎜

P( . . ) .1 5 2 5 0 9 11≤ ≤ = ⇒ =X n

Find the parameters of  the sample mean.

Scratchpad  

0.974653
normCdf )1.5, 2.5, 2,( 1

√20

Scratchpad  

5

1.5

–1.5

0

3

10

(10.8, 0)

15 20

x

y

f1(x)=normCdf )–0.9(1.5, 2.5, 2,
1

x

1.1

Round the value of  n to the rst larger integer.

Exercise 2F
If the population 

distribution is 

symmetrical, then even with a 

smaller sample we are going 

to achieve a better 

approximation to a normal 

distribution. When the 

population distribution is not 

symmetrical then to achieve 

a good approximation to a 

normal distribution we need a 

larger sample. Usually we say 

that we need a sample size 

of at least n = 30 to achieve 

normality of the sampling 

distribution.

1 Given the population parameters  and 
2 and the sample  

size n nd:

a P( . . )1 5 2 5≤ ≤X if = = =2 9 30, ,
2

n ;

b P( . . )1 25 1 35≤ ≤X if = = =1 3 0 04 50. , . ,
2

n ;

c P( . )X ≥ −0 48  if = − = =0 5 1 100. , ,
2

n ;

d P( )X < 397 if = = =400 234 85, ,
2

n ;

e P X <
⎛

⎝
⎜

⎞

⎠
⎟

1

2
if = = =1 6 40, ,

2
n ;

f P X − ≥
⎛

⎝
⎜ 2

1

5
 if = = =1 9 36 120. , ,

2
n .
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2 A real estate agent claims that the prices of  studio apartments  

in a city have a mean value of  €30,000 and standard deviation of   

€8,000. Given that 15 studio apartments were selected at random  

nd the probability that the average price doesn’t exceed €32,000.

3 The gestation period for dogs has a mean value of  63 days and  

a standard deviation of  2 days. Three female dogs are selected during  

this period. Find the probability that:

a the average gestation period of  selected dogs will last longer  

than 64 days;

b the average gestation period of  selected dogs will last less  

than 60 days;

c the average gestation period of  selected dogs will last within  

2 days of  the expected value.

4 A population with the parameters = =6 4 and 
2  is given.  

We take a sample of  size n from the population.

a Find the probability P( . . )5 4 7 6≤ ≤X  given that n = 10.

b Find the minimum sample size n such that P( )5 7≤ ≤X  is at  

least 0.95.

Review exercise
EXAM-STYLE QUESTIONS

1 Blanka and Svetlana are athletes specializing in the high jump.  

Blanka’s jumps are normally distributed with a mean value of   

2.02m and a standard deviation of  4cm. Svetlana’s jumps are  

normally distributed with a mean value of  1.98m and a standard  

deviation of  9cm. Their jumps are independent. During a  

competition Blanka made ve jumps and Svetlana made four jumps.  

Find the probability that the average height of  Blanka’s jumps was  

greater than the average height of  Svetlana’s jumps.

2 Let X m∼Po( ) such that Var E( ) ( ( ))2 52
X X= −

a Show that m = 5. 

b Hence nd P( )X ≥ 6

Another random variable Y, that is independent of  X, has a Poisson  

distribution such that Var 3 18Y( ) =

c Find P( )X Y  5

Let random variable Z be such that Z X Y= 3 4 .

d Find the mean and variance of  Z

e State with a reason whether or not Z has a Poisson distribution.
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3 A sh shop sells three types of  sh: bass, bream, and cod. The weights  

of  these sh may be assumed to be normally distributed. The mean  

values and standard deviations, in grams, are given in the table below.

Fish Mean Standard deviation

Bass 320 2

Bream 400 20

Cod 350 5

a Find the probability that the weight of  one bream exceeds 450g.

b Find the probability that the weight of two cod is less than 670g.

Nicholas buys one bass and one bream and Alex buys one cod. 

c Find the parameters of  the total weight of  sh Nicholas has bought.

d Calculate the probability that the total weight of  Nicholas’ bass  

and bream is less than twice the weight of  Alex’s cod.

4 a A random variable X follows a binomial distribution and Var( )X = 6.  

Given that n = 27 nd all the possible values of  E 3 7X( )

b A random variable Z follows a Poisson distribution and  

Var EZ Z( )( ) = ( ) +
2

12

Calculate Var 5 2+( )Z

5 Prices of  second-hand family cars advertised on a website have a  

mean value of  €12,000 and a standard deviation of  €3,200.

a A car is selected at random. Find the probability that the price  

exceeds €13,000.

b Given that 30 cars are selected at random from the website, nd  

the probability that the average price of  those 30 cars will be less  

that €11,500.

c Vladimir is buying a second hand family car and he is willing to  

spend between €10,500 and €12,500. How many cars should he  

randomly select in order to have the probability of  at least 85%  

that an average price falls within the desirable range?

6 a Let X be a random variable. By expanding the expression E EX X( )( )
2

show that E (E( ) ( ))X X
2 2

≥

b Given two independent random variables such that X p Y q∼ ∼Geo Geo( ) ( ), and 

where p q+ =1, show that Var E EX Y X Y X Y+( ) = +( ) +( )( )3
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Chapter  summary
Linear transformation of a single variable

Given that X is a random variable with nite parameters  

and a, b ∈R then

i) E(aX + b) = aE(X ) + b

ii) Var(aX + b) = a2 Var(X )

Linear transformation of two variables

Given that X and Y are two independent random variables with nite  

parameters and a, b ∈R then

i) E(aX + bY ) = aE(X ) + bE(Y )

ii) Var(aX + bY ) = a2 Var(X ) + b2 Var (Y )

Independent random variables

Given that independent random variables X

, X

2
, X

3
, …, X

n
, n ∈Z+ all have equal  

expected value and equal variance, E VarX X( ) = ( ) =μ σand
2, then  

E( ... )X X X n
n1 2+ + + = μ and Var( ... )X X X n

n1 2

2
+ + + = σ

Independent normal random variables

If  we take two independent normal random variables X N Y N∼ ∼( , ) ( , )μ σ μ σ1 1

2

2 2

2and

then the linear combination aX bY a b+ ∈, ,  is going to be a normal variable also.  

The parameters are = + = +a b a b
1 2

2

1

2 2

2

2
and

2 , so we can write  

aX bY N a b a b+ + +∼ ( , )μ μ σ σ1 2

2

1

2 2

2

2

Sampling Distribution of the Mean 

E VarX X
n

( ) ( )= =μ
σ

and

2

, Normal population sample  

X N X N
n

∼ ∼( , ) ,μ σ μ σ2
2

⇒
⎛

⎝
⎜

The term standard deviation of the mean, 
σ

n

 is also known as the standard error.
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The Central Limit Theorem

When sampling from any population X with the nite parameters  and σ 2, 

the distribution of  the sample mean X  is approximately Normal if  the sample 

size n is large enough. The mean of  the distribution of  the sample means is equal 

to the population mean and the variance of  the distribution of  the sample means is the 

variance of  the parent population divided by the sample size, X N
n

∼ μ σ
,

2⎛

⎝
⎜ .
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CHAPTER OBJECTIVES:

7.3 Unbiased estimators and estimates; comparison of unbiased estimators 

based on variances;

X  as unbiased estimator for μ. X
X

n

i

i

n

=
=

∑
1

S2 as unbiased estimator for σ 2. 

S
X X

n

i

i

n

2

1 1
=

( )
=

∑

7.5 Condence intervals for the mean of a normal population.

7.6 Null and alternative hypotheses H
0
 and H

1
. Signicance level. Critical regions, 

critical values, p-values, one-tailed and two-tailed tests. Type I and II errors, 

including calculations of their probabilities. Testing hypotheses for the mean of 

a normal population.

Before you start

1 Given the following table, nd the mean 

and variance of  the continuous variable X

X Frequency

0 ≤ x < 0 3

0 ≤ x < 20 2

20 ≤ x < 30 2

30 ≤ x < 40 8

40 ≤ x < 50 6

Answers obtained by the GDC.

2 Given that X ~ B(10, 0.3) nd:

a P(X = 5) = 0.103;

b P(X ≤ 6) = 0.989;

c P(1 ≤ X ≤ 3) = 0.62.

3 Given that Y < Po (2) nd:

a P(Y = 0) = 0.135;

b P(2 ≤ Y ≤ 5) = 0.577;

c P(Y ≥ 4) = 0.143.

1 Given the following table, nd the mean 

and variance of  the variable X

X Frequency

0 ≤ x < 2 22

2 ≤ x < 4 37

4 ≤ x < 6 46

6 ≤ x < 8 5

2 Given that X ~ B(n, p) nd:

a P(X = 5) if  n = 5 and p =

1

2
;

b P(3 ≤ X < 8) if  n = 10 and p =

1

5

3 Given that Y < Po (m) nd:

a P(Y = 0) if  m = 0.4;

b P(3 ≤ Y < 8) if  m = 7.



Chapter 3 79

Biased information: how can we make sense of data?

Statistics are often presented as an attempt to add credibility to theories, 

proposals, ideologies, and arguments. You can see this by paying attention to 

television advertisements. Many of  the numbers put forward through 

advertisements do not represent balanced statistical analysis. They can be 

misleading and might entice you into making decisions that you nd cause to 

regret later on. For these reasons, learning about statistics is a good step towards 

taking control of  your life.

Statistical methods can be used to pull useful information out of  huge amounts 

data. In our current digital age, this is extremely useful and possible to do 

systematically due to advancements in technology. Our task is to decide which 

statistics we want to use; calculators and computers can then be used to do the 

hard work for us! But what is statistics and how can we decide whether or not a 

particular statistic is balanced or relevant? Roughly, a statistic is a quantity 

calculated from a sample of  data that tells us something about the properties of  

that sample. However, two dierent data samples from the same population can 

be very dierent. So, is there some way to accurately learn about an entire 

population from only a sampling of  its values? Fortunately, there is a way, and it 

is called an Estimator

An Estimator is a way of  calculating a special type of  statistic. This statistic 

reects properties of  both the data sample and also the entire population from 

which the sample was drawn. In this chapter we are going to study in detail how 

to obtain some estimators of  parameters of  a population, and analyse their 

quality in terms of  how accurately they model the population’s parameters.
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3.1 Estimators and estimates

Suppose that you have to perform a statistical analysis for a company. 

You have lots of data, but where do you start? How can you use these 

samples of data to infer and draw conclusions about the entire population?

Let’s say that you have a population that has a parameter, θ. Since you  

have no knowledge of  the exact value of  θ, we want to estimate this parameter  

by taking a random sample from the population. A random variable T describes the 

information that you obtain from that sample. The variable T is called an estimator.  

A specic value by which you approximate the parameter θ is called an estimate. 

Look at the two normal distributions shown below. Consider two  

normal random variables, S and T, that are estimators for μ

S

μ

T

μ

Notice that E S( ) ≠ μ , whilst E T( ) =  since T has a symmetrical shape with respect  

to the mean value. In this case we say that T is an unbiased estimator for the mean value μ, 

and S is obviously biased and hence should not be used for estimation of  the parameter.

In general a random variable T is called an unbiased estimator for the  

population parameter θ if  E T( ) =θ

Denition:

An estimator of  a population parameter (such as the mean, μ, or the 

variance, 2) is a random variable that depends on the sample data. 

The estimator provides an approximation to this unknown parameter. 

A specic value of  that random variable is called an estimate

Let us now consider two random variables, both unbiased estimators of  the same  

parameter 
1 2E( ) E( )T T μ= = , and consider which one might be a better estimator.

T
1

μ μ

T
2
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By looking at the graphs of  both unbiased estimators T


and T
2
, notice  

that T

 has a smaller spread than T

2
. Thus, the standard deviation  

(or variance) of  T

 is smaller than the standard deviation (or variance)  

of  T
2
. For a good estimation, it is essential to use a random variable  

with a small standard deviation.

Denition:

Given two estimators T

 and T

2
 of  the population we say that  

T

 is a more ecient estimator than T

2
 if  1 2Var ( ) Var ( )T T<

Example 

Given two distributions of  sample mean  taken from the same normal population, show 

that the better estimator is the one with the larger sample.

X X X n X
n

n
1 2

2
2

, , ..., ( , ), ,  N Nμ σ μ
σ

∈ ⇒+ ⎛

⎝
⎜

Y Y Y Y
m

m
1 2

2
2

, , ..., ( , ), ,  N Nμ σ μ
σ

m∈ ⇒
⎛

⎝
⎜

+

Assume that one is a better estimator: 

Var VarX Y n m
n m n m

( ) ( ) < ⇒ << ⇒ ⇒ >
σ σ2 2

1 1

Therefore the better estimator comes from a larger 

sample.

Take n observations and nd the 

parameters of  the sample mean. Take m 

observations from the same population and 

nd the parameters of  the sample mean.

Use the denition of  better estimator.

Unbiased estimators for the mean and variance of a  

normal random variable

Two well-known statistics are the mean and variance. When creating statistical  

scenarios we will need to determine estimators for the mean and variance,  

i.e. we will need an unbiased estimator for the mean value of  the set of   

normal random variables, and an unbiased estimator for the variance of  the  

set of  normal random variables.

Denition:

For normal random variables X
i
 ~ N( , σ 2),  ≤ i ≤ n,

1 X  is an unbiased estimator for . X
X

n

i

i

n

=
=

∑
1

2 S 2 is an unbiased estimator for 2. 
2

2

1

( )

1

n

i

i

X X

n
S

=

= ∑
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A well-dened denition?

We must show that the above denitions for unbiased estimators of   

μ and σ 2 are well dened. To do so, we must show the following:

1 E(X ) = 

Since all of  the samples are taken from the population E( ) , 1, 2,...,
i

X i nμ= =

( )
1 1 1

1 1 1
E E E E( )

n n n

i

i i

i i i

X

n n n n
X X X nμ μ

= = =

⎛ ⎞ ⎛ ⎞
= = = = × =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
∑ ∑ ∑

2 E(S 2) = 2

By now we have found out that E VarX X
n

( ) = ( ) =μ
σ

 and 

2

, but also 

2 2E (( ) ) , 1, 2,...,
i

X i nμ σ− = =  therefore we can calculate the following: 

2 2

1

E (( ) )
n

i

i

X nμ σ

=

− =

2 2

1 1

E(( ) ) E ((( ) ( )) )
n n

i i

i i

X X X Xμ μ
= =

− = − + −

2 2

1

E (( ) 2 ( ) ( ) ( ) )
n

i i

i

X X X X X Xμ μ
=

= − + − − + −∑

2 2

1

(E( ) 2E( )E ( ) E( ) )
n

i i

i

X X X X X Xμ μ
=

= − + − − + −∑

2 2

1 1 1

E ( ) 2E( )E( ) E( )
n n n

i i

i i i

X X X X X Xμ μ
= = =

= − + − − + −∑ ∑ ∑

2 2

1 1 1

0

E( ) 2E( ) E( ) E( )
n n n

i i

i i i

X X X X X Xμ μ
= = =

= − + − − + −∑ ∑ ∑


2
2 2

1 1

E ( ) Var ( ) E( )
n n

i i

i i n
X X n X X X n

σ

= =

= − + = − +∑ ∑

2 2

1

2 2 2

1

E ( )

E( )

n

i

i

n

i

i

X X

n X X

σ

σ σ

=

=

= − +

⇒ = − +

∑

∑

( )2 2 2 2

1

E( ) 1
n

i

i

X X n nσ σ σ
=

⇒ − = − = −∑

S2 is an unbiased estimator of  the population variance because

2

2 2 2 2

1 1

( ) 1 1
) ( )

1 1 1
E( E E ( 1)

n n

i

i

i i

X X
X X

n n n
S n σ σ

= =

⎛ ⎞− ⎛ ⎞
−⎜ ⎟ ⎜ ⎟− − −⎝ ⎠ ⎝ ⎠

= = = − =∑ ∑

Thus, the above denitions for unbiased estimators of  μ and σ 2 are well-dened.  

In examples 2 and 3, we will look at how to use these denitions.
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Example 

Show that the unbiased estimator of  the variance can be found by using the formula:

==
∑

2 2

2 1

( )

1

n

i

i

x n x

n
s . Hence show that s

n

n

2 2

1
= σ

( ) ( )22 2

2 1 1

( 2 )

1 1

n n

i i i

i i

x x x x x x

n n
s

= =

− − +

=
− −

=
∑ ∑

( )
= = =

− +

=
∑ ∑ ∑

22

1 1 1

2

1

n n n

i i

i i i

x x x x

n

( ) ( )
= =

− × + −

= =
− −

∑ ∑
2 22 2

1 1

2

1 1

n n

i i

i i

x x nx n x x n x

n n

( ) ( )
= =

− −

− −
= =
∑ ∑

2 22 2

2 1 1

1 1

n n

i i

i i

x n x x n x
n

n n n
s

( ) σ=

⎛ ⎞
⎜ ⎟
⎜ ⎟= − =

− −⎝ ⎠

∑ 2

2 21

1 1

n

i

i

x
n n

x
n n n

Expand.

Use the distributive property.

Simplify the expression by using 

the denition of  the mean.

Simplify by using the denition 

of  variance.

Example 

Given the following set of  data: 22, 24, 23, 22, 26, 26, 27, 25, 24, 24, 26, 25, 26, 27, 28 nd:

a an unbiased estimation of  the mean;

b an unbiased estimation of  the variance.

Method I

a = ⇒ = =
∑ 375

15
25

i
x

n

x x

b

( )
= − ×

= ⇒ =
∑

22

2

2 21
9421 15 25

1 14

n

i

i

x n x

n
s s

= = =

46

14

23

7
3 29

Method II

*Unsaved 

A B C D

1

2

3

4

5

22

24

23

22

26

One–Var...

25.

375.

9421.

1.81265

Title

x

  x

  x2

SX := Sn–... 3.28571

D5 =c52

1.1

∑

∑

s
2

3 29= .

Unbiased estimate of  the mean is the mean 

value of  the sample itself.

Use the short formula for the unbiased estimate 

of  the variance.

Use the GDC One-variable statistics 

calculation. In order to nd the variance, square 

the unbiased estimate of  the population 

standard deviation s.
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Exercise 3A

1 Calculate the unbiased estimate of  the mean and variance for the 

following sets of  data:

a {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

b {21, 24, 36, 28, 30, 22, 25, 26, 38, 32, 34, 29, 37, 33, 31, 30}

c {1, 4, 7, 10, ..., 133}

2 The distribution of  broken eggs in 40 boxes (where each box 

contains 10 eggs) is given in the following table:

x
i

0  2 3

f
i

22 2 4 2

Find unbiased estimates of  the mean and standard deviation of  

the broken eggs.

 The following table displays the times, T (minutes), taken by a 

group of  70 students to travel to school.

T 0 10≤ <t 10 20≤ <t 20 30≤ <t 30 60≤ <t 60 120≤ <t

Frequency 6 3 26 7 8

Find:

a An unbiased estimate for the mean of  T ;

b An unbiased estimate for the standard deviation of  T

3.2 Condence intervals for the mean

Let’s analyze a real-life scenario: 

A large poultry farm raises over ,000,000 broilers (young 

chickens) per year. After six weeks, broilers are ready to be 

released from the farm. It is dicult to measure the weight 

of  every single released broiler, so a certain-size sample of  

six-week old broilers are weighed. The mean weight of  a 

broiler from this sample is found to be 2.0kg. Using the 

sample mean, we wish to estimate the mean value of  the 

whole population of  six-week-old broilers.

However, how condent can we be that the population mean  

lies within certain limits (in kilograms) of  the sample mean  

value of  2.0kg? Can we quantify such a condence that the 

population mean lies within the prescribed interval?

Our ability to answer such a question depends on the  

information available to us, as the calculations to nd such 

a condence interval depend on how much we know about 

the population in question. Let’s assume that the given data 

satises the conditions of  the Central Limit Theorem.

If data satises the 

conditions of the Central 

Limit Theorem, we are able to 

approximate the distribution 

of the data by a normal 

distribution. Using this 

approximation, we are able 

to calculate probabilities of 

events related to the real-life 

problem we’re studying.
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There are two types of  situation that you may be faced with when 

calculating condence intervals for the mean of  a population: 

Case I: The population standard deviation is known;

Case II: The population standard deviation is not known, and we 

have to estimate it from the sample.

Case I: Condence interval for μ when  is known

First we are going to investigate the case when population standard 

deviation is known.

If  a random variable X follows a normal distribution such that 
2N( , )X μ σ∼  then, for any value n, n∈

+

 , the sample mean is also 

normal and 
σ

μ

2

,N
n

X ∼ . Let’s take the condence value to be  

 − α , where  is called the level of signicance. This means that 

we can calculate an interval [a, b] in which we are ( – α )% sure that 

the sample mean lies. The most commonly used values for the level 

of  signicance are α  = 0., 0.05, 0.0.

Sir Ronald Aylmer Fisher (1890–1962) was an English statistician, 

evolutionary biologist, geneticist, and eugenicist. He is considered by 

many to be “The father of statistics”. He made immense contributions to the 

development of analysis of variance, experimental design, and likelihood 

based methods. In the early 20th century he developed statistical 

hypothesis testing and established the standard of signicance (α) level to 

be 5%. The other most commonly used signicant levels, 1% and 10%, were 

developed in relation to that particular eld of study. Fisher was also one of 

the founders of population genetics. He contributed to biostatistics and 

biometrics, and was one of the most important biologists since Darwin.

We need to nd the boundaries a and b of  the condence interval  

[a, b] such that P (a ≤ μ ≤ b) =  – α

x

y

Acceptance region: 1 – 

μ

Rejection region: Rejection region: 
2

α

2

α

α
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To nd the boundaries we need to convert it to the standard normal  

distribution 
μ

σ
=

x

z

n

( )α α α

α
α⎛ ⎞Φ − = ⇒ − ≤ ≤ = −⎜ ⎟

⎝ ⎠
1

2 2 2
2

1 P 1z z z z

α α

μ
σ

α⎛ ⎞⇒ − ≤ ≤ = −⎜ ⎟
⎜ ⎟
⎝ ⎠

2 2

P 1
x

n

z z

α α

σ σ
μ α

⎛ ⎞
⇒ − × ≤ − ≤ × = −⎜ ⎟

⎝ ⎠2 2

P 1
n n

z x z

α α

σ σ
μ α

⎛ ⎞
⇒ − × ≤ ≤ + × = −⎜ ⎟

⎝ ⎠2 2

P 1
n n

x z x z

So in this case the condence interval for the mean value of  the population  

is given by the following formula:

α α

σ σ⎡ ⎤
− × + ×⎢ ⎥

⎣ ⎦2 2

,
n n

x z x z

The values of  
α

2

z  are standard values for each α . The most common cases of   

condence intervals are listed in the table below:

α

z
α

2
α α

σ σ⎡ ⎤
− × + ×⎢ ⎥

⎣ ⎦2 2

,
n n

x z x z

0. Φ ( ) =1
0 95 1 645. .

σ σ⎡ ⎤
− +⎢ ⎥

⎣ ⎦
1.645 , 1.645

n n

x x

0.05 Φ ( ) =1
0 975 1 960. .

σ σ⎡ ⎤
− +⎢ ⎥

⎣ ⎦
1.960 , 1.960

n n

x x

0.0 Φ ( ) =1
0 995 2 576. .

σ σ⎡ ⎤
− +⎢ ⎥

⎣ ⎦
2.576 , 2.576

n n

x x

Even though we can use a GDC to obtain condence intervals easily, we will  

illustrate the use of  both methods for nding condence intervals to better  

understand their meaning.
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Jerzy Neyman (1894–1981) was a Moldovan born statistician. He 

studied in Ukraine, and afterwards worked in Ukraine, England, Poland, 

France, and the USA. In the period from 1934–38, whilst working at the 

University College London together with Fisher and Pearson, Neyman made 

four major contributions to statistics, one of which was a contribution to the 

theory of condence intervals.

Example 

In a certain country a random sample of  00 men is taken. The mean height is found to be 

83.6cm, with a standard deviation of  5cm. Find the 90% condence interval for the 

mean height of  the male population in the country, giving your answer correct to two 

decimal places. Interpret your answer.

Method I

σ= = =

5

100
183.6, 0.5x

α  = 0.

⇒ [83.6–.645 × 0.5, 83.6 + .645 × 0.5]

⇒ [82.7775, 84.4225]

⇒ [82.8, 84.4]

Method II

1/99

Scratchpad  

“Title”

“CLower”

“CUpper”

“ME”

“n”

σ

“x”

“z Interval”

182.778

184.422

183.6

0.822427

100.

5.

⇒ [82.8, 84.4]

We are 90% confident that the population 

mean lies within this interval.

Identify the mean value of  the sample and nd 

the standard error.

Identify the signicance level and apply the 

formula . , .

n n

x 1 645 x 1 645
σ σ

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

Use a GDC to nd the condence interval. In the 

Statistics menu, choose Condence Intervals, 

select z Interval, and then set the Data input 

method as ‘Stats’.

0/99

Z Interval

5σ

183.6x:

100n:

0.9C Level:

ok Cancel

|

When entering the statistics into your GDC, you must enter the 

population standard deviation and not the sample standard deviation. 

The GDC uses the number of statistics (n) to calculate the sample’s standard 

deviation itself.
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Thus far, we have calculated condence intervals for the mean only  

from statistics which represent the data (i.e. we are given the mean,  

standard deviation, and size of  sample, from which we calculate  

the condence interval). However, sometimes you may be asked to  

calculate condence intervals from raw data. In this case you must  

calculate the statistics rst (i.e. mean, standard deviation, etc.)  

and then proceed to calculate the condence interval. We will look  

at doing this in Example 5.

Example 

After a rainy night, 2 worms have surfaced on sand. Their lengths, measured in cm, were 

as follows: 2.0, ., 0.5, 0.8, 2., 0.4, 0.9, 2.2, 0.9, .9, .2, and .6. 

Assuming that this sample came from a population that follows a normal distribution with 

variance 4, calculate the 95% condence interval of  the mean length of  the worm 

population within the sand, and interpret your answer.

Method I

σ= = =
∑ 2

12 12
11.3,

i
x

x

α  = 0.05

⇒ − × + ×
⎡

⎣
⎢

⎤

⎦
⎥11 3 1 960 11 3 1 960

2

12

2

12
. . , . .

⇒ [0.7, 2.43]

Method II

2/99

Scratchpad  

“SX := Sn–1X”

“CLower”

“CUpper”

“ME”

“n”

σ

“x”

10.1684

12.4316

11.3

1.13159

0.636753

12.

2.

⇒ [0.7, 2.43]

We are 95% confident that the population 

mean lies within this interval.

Identify the mean value of  the sample and 

nd the standard error.

Identify the signicance level and apply the 

formula . , .

n n

x 1 960 x 1 960
σ σ

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

Use a GDC to nd the condence interval. 

First, enter the lengths of  the worms as a data 

list. Then, in the Statistics menu, choose 

Condence Intervals, select z Interval, and 

then set the Data input method as ‘Data’.

z Interval

2σ

aList:

1Frequency List:

0.95C Level:

ok Cancel

|
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When planning a statistical survey, you may actually need to calculate the 

sample size you must choose in order to obtain a specic condence 

interval at a certain distance from the mean. The following example 

shows how to calculate the required sample size.

Example 

Wooden beams are manufactured for interior construction and the length of  beams has  

a standard deviation of  2cm. Find how many beams must be sampled so that we would  

be 99% condent that the sample mean doesn’t dier from the beams’ mean by  

more than cm.

μ μ− ≤ ⇒ − ≤1 1x x

μ⇒ − ≤ − ≤1 1x

μ⇒ − ≤ ≤ +1 1x x

σ = ⇒ × =2 2 576 1
2

n

⇒ = ⇒ =n n4 514 20 376. .

We should take at least 2 beams.

Rewrite as an inequality.

Use the 99% condence interval

. , .

n n

x 2 576 x 2 576
σ σ

+
⎡ ⎤
⎢ ⎥
⎣ ⎦

Use the population standard deviation and 

nd the sample size.

The sample size must be a positive integer.

Exercise 3B

1 Given the values of  σ α, , ,  and x n , nd a (1 – α )% condence interval for the mean if:

a σ α= = = =5, 1, 10 and 0.01x n ;

b σ α= − = = =11, 4.3, 22 and 0.05x n ;

c σ α= = = =2854, 327, 230 and 0.1x n

2 Given the sample A from a population with standard deviation σ, nd the 

(1 – )% condence interval for the mean if:

a A = {1, 2, 3, 4, 5, 6, 7, 8, 9}, σ = 2 and α  = 0.1;

b A = σ α ={0.1, 0.12, 0.15, 0.18, 0.13, 0.12, 0.09, 0.11, 0.13, 0.21, 0.15}, = 0.04 and 0.01;

c A = σ{321,325,330,324,325,326,317,318,329,310,314,318,327,322,328}, = 4.5

and α  = 0.05.

3 A sample with n elements is taken from a normal population that has a standard  

deviation of  5.5. Find the value of  n so that we would be 95% condent that  

the sample mean doesn’t dier from the population mean by more than 2.

4 Nayla buys 8 clementines and weighs them. Their weights, shown in  

grams (g), are: 70, 75, 77, 71, 68, 80, 85, 72. We may assume that these clementines  

came from a normal population with standard deviation of  3.5g.  

Determine a 95% condence interval for the mean weight of  clementines.
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5 The measurement of  n independent random measurements may be  

assumed to follow a normal distribution with the mean value μ

and the variance σ
2

9= . Given that the 90% condence interval  

for the mean is found to be 14 2 17 4. , .  nd:

a the mean value of  the sample;

b the sample size n

In order to better understand the inuence of  the sample size on the  

length of  a condence interval, we are going to look at the following  

investigation.

Investigation

Let’s consider samples of  dierent sizes, all of  which have the 

same mean value =100x . The samples come from a population 

with standard deviation σ 2
= 64

a Find a 95% condence interval for the mean for the following 

values of  sample size n given that:

i n =10;

ii n = 25;

iii n = 50;

iv n =150

b What can you conclude about the relationship between the 

lengths of  intervals and sample sizes? Justify your answer.

Case II: Condence interval for μ when  is unknown 

In real-life situations, populations constantly grow or decay,  

so it is very unlikely that we will know the parameters of  the  

observed population. Even if  we assume that it is normally  

distributed, there is hardly any situation when we are certain  

about population parameters. Thus, we often need to  

estimate them.

Investigation  illustrated that larger samples give a greater 

degree of  certainty to our estimates. However, it is often dicult 

to take a large sample for practical reasons. We would, however, 

like to be as accurate as possible in our conclusions, when 

working with small or large samples.

Before we estimate the population standard deviation σ , we must 

rst dene a concept that we will use to make our estimate:

When σ is unknown we must rst estimate it from available data.  

If  we have a sample of  size n, since we need to calculate an  

estimation of  , we say that we have = −n 1 degrees of   

freedom. 

A degree of freedom, v,

is the number of data 

that can vary, without 

changing the population 

parameter we are 

estimating. For example, 

if we have a sample 

of size n and we have 

calculated an estimation 

of the standard deviation 

of the population, then 

n − 1 data can vary whilst 

the last one must be 

prescribed by the previous 

n − 1 data pieces in order 

to obtain the standard 

deviation we require.
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To estimate the population standard deviation σ we use an unbiased  

estimate of  the population standard deviation s
n

n

=σ

1
. 

The Central Limit Theorem suggests that we can approximate the  

distribution of  a large sample by a normal distribution, but the  

question still remains: How are smaller samples distributed? 

William Sealy Gosset (1876 − 1937) worked as a statistician in the 

quality control department of a brewery. In 1908, he published a paper 

titled ‘t-test’ under the pseudonym ‘Student’ because his employer strictly 

forbade employees from publishing any scientic papers. As a result, his 

name is not as well-known as the important statistical results he formalized. 

The t-test was initially used to ensure quality control of small samples of 

brewed beer. Gosset discovered the form of the t-distribution by a 

combination of mathematical and empirical work with random numbers; 

an early application of the Monte-Carlo method. At the end of 1935, 

Gosset left Ireland to take charge of the new Guinness brewery in London. 

Despite the hard work involved in this venture, he continued to publish 

statistical papers.

To approximate the distribution of  smaller samples, we use t-distribution 

(commonly called Student’s t-distribution after Gosset) when sample  

size doesn’t exceed 30. 

For a t-distributed random variable T, we approximate the standard  

deviation σ  by the estimate of  the standard deviation, s: 

Z T
X

n

X

s

n

= ⇒ =
− −μ

σ

μ
,  

where the variable T follows a t-distribution with n −1 degrees of   

freedom and we write ( 1)T t n −∼ .

Student’s t-distribution graphs are very similar to the standard normal  

distribution graph. They are bell-shaped curves; symmetrical about  

the y-axis and achieving maximum value when the curve crosses  

the y-axis.

Let’s use a GDC to look at the probability density function of  the standard 

normal distribution and some t-distributions with dierent degrees of  freedom. 
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The graphs show that this distribution is aligned with the standard normal distribution 

for the larger degrees of  freedom (i.e. for larger samples), but for smaller samples the 

t-distribution better approximates the data since the tail areas are a bit larger and not as 

insignicant as under the normal distribution.

*Unsaved 1.1

0.5

0.2

0.1

–0.1
–1 –1 –2 –3 –4 –5 x

y

–2–3–4–5

f2(x) = tpdf(x, 1)

f1(x) = normpdf(x, 0, 1)

f3(x) = tpdf(x, 5)

f4(x) = tpdf(x, 10)

Since the standard normal distribution and the t-distribution curves are similar in shape, 

we can adapt the formula for the condence interval of  the mean of  a normal 

distribution to nd a formula for the condence interval of  the mean of  a t-distribution.

Before the introduction of  GDC technology, z-distribution and t-distribution  

tables were used to nd critical values. Here is an example of  a t-distribution table. 

p = P(X ≤ t)

p

t

P 0.9 0.95 0.975 0.99 0.995 0.9995

v =  3.078 6.34 2.706 3.82 63.657 636.69

2 .886 2.920 4.303 6.965 9.925 3.599

3 .638 2.353 3.82 4.54 5.84 2.924

4 .533 2.32 2.776 3.747 4.604 8.60

5 .476 2.05 2.57 3.365 4.032 6.869

Nowadays calculators have a built-in “invt” feature, i.e. a function with  

two variables that calculates the critical t value; t invt
c
= −

⎛

⎝
⎜1

2

α
ν, .  

So the condence interval can be calculated by using the formula:

⎡ ⎤
− × + ×⎢ ⎥

⎣ ⎦
,

c c

s s

n n

x t x t
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Regardless of the fact that the t-distribution is very close to the 

standard normal distribution for a large sample size, calculators can 

give us critical t-values for any sample size we choose. Therefore, in this 

book we are going to use t-distribution whenever the population standard 

deviation is unknown.

Example 

In a sample of  ve 00 g chocolates the mean value of  the energy level was found to be 

= 2540x kJ, whilst the estimate for the population standard deviation was s =120kJ. 

Calculate the 99% condence interval for the mean value of  the energy level of  00 g of  

chocolates.

Method I

n t
c

= ⇒ = ⇒ =5 4 4 604ν

2540 4 604
120

5

± ×

[ ]2293, 2787μ⇒ ∈ kJ

Method II

1/1

*Unsaved 

“Title”

“CLower”

“CUpper”

“ME”

“df”

“SX := Sn–1X”

“n”

“x”

“t Interval”

2292.92

2787.08

2540.

247.082

4.

120.

5.

1.1

[ ]2293, 2787μ⇒ ∈ kJ, given correctly to the 

nearest kJ.

n 1= − and use a GDC to nd the critical 

t-value.

Use the formula 
c

s

n

x t± ×

3/99

*Unsaved 

120

4.60409

2292.92

1.1

invt(0.995, 4)

5

2540+ ·4.6040948673027
120 2787.08

5

Use the GDC t-interval stats input method and 

input the given statistics.

0/99

*Unsaved 

t Interval

2540

120

5n:

0.99C Level:

ok Cancel

|

Sx:

x:

Let’s try to see how to solve the problem of  the mean weight of  broilers.
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Example 

A large poultry farm grows broilers. A sample of  20 broilers is taken. The mean weight of  

the sample was found to be 2.0kg. It is assumed that broilers come from a normal 

population with the unbiased estimate of  the standard deviation of  0.3kg. Calculate the  

90% interval for the mean weight of  a broiler.

Working:

Method I

n t
c

= ⇒ = ⇒ =20 19 1 729ν

2 10 1 729
0 3

20

. .± ×

[ ]1.98, 2.22μ⇒ ∈ kg

Method II

2/99

*Unsaved 

“Title”

“CLower”

“CUpper”

“ME”

“df”

“SX := Sn–1X”

“n”

“x”

“t Interval”

1.98401

2.21599

2.1

0.115994

19.

0.3

20.

1.1

[ ]1.98, 2.22μ⇒ ∈ kg

n 1= − and then use a calculator to nd the t-value.

Use the formula 
c

s
x t

n

± ×

3/99

*Unsaved 

0.3

1.72913

1.98401

1.1

invt(0.95, 19)

√20

0.3

√20

2.21599

Use the GDC t-interval stats input method and 

input the given statistics.

0/99

*Unsaved 

t Interval

2.10

0.3

20n:

0.9C Level:

ok Cancel

|

Sx:

x:

When the actual data is given, we need to use the list and statistic 

data features on the GDC, as shown in the following example.
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Example 9

In a box of  six eggs, the weights (measured in grams) of  each egg were: 62, 63, 65, 62, 66, 

66. Calculate the 95% condence interval for the mean weight of  an egg.

Method I

= ⇒ = =
∑ 384

6
64

i
x

n

x x

s s
x n x

n

i= ⇒ = =
( )∑ 2

2

1

24594 24576

5
1 897

n t= ⇒ = ⇒ =6 5 2 571

64 2 571
1 897

6

± ×

[ ]62, 66μ⇒ ∈ g

Find the mean value of  the sample.

Find the unbiased estimate of  the population 

standard deviation. n 1= − and then we 

look at the tables or use a calculator to nd 

the t-value.

Use the formula 
c

s

n

x t± ×

Method II

3/99

*Unsaved 

“Title”

“CLower”

“CUpper”

“ME”

“df”

“SX := Sn–1X”

“n”

“x”

“t Interval”

62.0088

65.9912

64.

1.99116

5.

1.89737

6.

1.1

[ ]62, 66μ⇒ ∈ g

Use the GDC t-interval data input method 

where data is stored in a list.

2/99

*Unsaved 1.1

{62, 63, 65, 62, 66, 66}

t Interval

a

1

0.95C Level:

ok Cancel

Frequency List:

List: |

Example 0

A random sample of  ten independent observations are taken from a normal 

population. The sample gave the results 
10 10

2

1 1

527 and 28,157
i i

i i

x x

= =

= = .  

Find a 90% condence interval for the population mean.

= ⇒ = =
∑ 527

10
52.7

i
x

x x
n

s
x n x

n

i=
( )∑ 2

2

1

⇒ = =
− ×

s
28157 10 52 7

9

2

6 5328

1/99

*Unsaved 

“Title”
“CLower”
“CUpper”

“ME”
“df”

“SX := Sn–1X”
“n”

“x”

“t Interval”
48.9131
56.4869

52.7
3.78694

9.
6.5328

10.

1.1

[ ]48.9, 56.5μ∈

First we must nd the unbiased estimate of   

the mean of  the sample and then the unbiased 

estimate of  the population standard deviation.

Now, use the GDC t-interval stats input method 

and input the given statistics.

0/99

*Unsaved 1.1

t Interval

52.7

6.5328

10n:

0.9C Level:

ok Cancel

Sx:

x:
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Exercise 3C

1 Given the values of  , , ,  and x s n α , nd (1 – α )% condence  

interval for the mean if:

a α= = = =15, 1.2, 15 and 0.1x s n ;

b α= − = = =23, 5.8, 32 and 0.01x s n ;

c α= = = =3478, 429, 310 and 0.05x s n . 

2 Given the set A of  data nd the (1 – α )% condence interval for  

the mean if:

a { }1, 2, 3, 4, 5, 6, 7, 8, 9  and 0.01A α= = ;

b A ={ }0 1 0 12 0 15 0 18 0 13 0 12 0 09 0 11 0 13 0 21 0 15. , . , . , . , . , . , . , . , . , . , .  aand α = 0 05;

c A = 321,325,330,324,325,326,317,318,329,310,314,318,327,322,328

and = 0 1. . 

3 Nadim buys 12 mandarins and weighs them with the following 

results given in grams (g): 66, 70, 75, 84, 90, 77, 71, 68, 80, 85, 72, 63. 

We may assume that the mandarins came from a normal population. 

Determine a 99% condence interval for the mean weight of  the 

mandarins.

4 Eight independent random measurements are taken from a normal 

population with the unbiased estimate of  population variance  

s2 = 2.25. Given that the condence interval for the mean is found  

to be [ ]12.345, 14.355  nd:

a the mean value of  the sample;

b the condence level of  the interval.

5 A box with 15 cod is bought at a sh market. The mean weight  

of  a cod at the market is 536g. Weights of  cod bought at the  

market are normally distributed and the unbiased estimate of  the  

standard deviation is 95g.

a Find a 95% condence interval for the mean weight of  cod  

bought at the market.

b Find a 99% condence interval for the mean weight of  cod  

bought at the market.

c Comment on the signicance level and the length of  the  

condence interval.
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Condence interval for matched pairs

Matched pairs are dierent samples taken from the same 

population. In our study, we want to know whether or not two 

matched pairs dier. For example, suppose the same product is 

manufactured in two dierent factories. We might take two samples 

of  product, one from each factory, and compare the means of  the 

two samples in order to determine whether the dierent samples 

satisfy the same standards of  production. 

Matched pairs can also be used to compare a variable against itself

when measured in two dierent circumstances. An example might 

be in measuring the iron content of  a group of  people who suer 

from a blood condition. We would measure the same group both 

before and after the medical treatment, and these two sets of  

measurements on the same group would form our matched pair. 

This sort of  analysis is used to determine whether or not a new drug 

is eective. 

Alternatively, we might use matched pairs analysis to study a group 

of  people who follow a certain diet in order to lose weight. We 

might measure their weights before and after the diet to see whether 

they have achieved their goal, and the two sets of  results from the 

same group would form our matched pair.

Matched pairs are used a lot in biological experiments. To determine 

the effect of a drug on a population, we might monitor two groups: an 

experimental group and a control group. We match and compare all the 

elements of one group with the elements of the other group based on certain 

characteristics (such as gender, age, weight, etc.). We would then compare 

the impact the drug has had on the experimental group, compared with the 

control group. This is done to minimize the effect of other inuences on  

the experimental group, which, without a control group, we might ascribe to 

the effects of the drug.
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Example 

A group of  patients at a hospital suer from chronic iron deciency. They are treated with 

two new drugs: drug A and drug B. First, they were treated with drug A and, after a few 

days when the inuence of  drug A had worn o, they were treated with drug B. Serum 

iron tests were conducted and the results (in g/dl ) are shown in the following table:

Patient a b c d e f g h

Drug A 60 58 47 80 35 55 53 40

Drug B 63 55 42 76 29 6 5 4

a Find the dierences between the results obtained by drug A and drug B.

b Calculate the 90% condence interval of  the mean of  dierences in part a

a
d

i
= A−B −3 3 5 4 6 −6 2 −

b Method I

d d
d

n

i
= ⇒ = =
∑ 10

8
1 25

s s
d

i

d

d n d

n
= ⇒ = =

( )∑ 2
2

1

136 12 5

7
4 200

n t
c

= ⇒ = ⇒ =8 7 1 895

4.200

8

1.25 1.895± ×

[ ]1.564, 4.064
d

μ⇒ ∈ −

Method II

1/99

*Unsaved 

“Title”

“CLower”

“CUpper”

“ME”

“df”

“SX := Sn–1X”

“n”

“x”

“t Interval”

–1.56353

4.06353

1.25

2.81353

7.

4.20034

8.

1.1 1.2

[ ]1.564, 4.064
d

μ⇒ ∈ −

Subtract the results of  drug B from those  

of  drug A.

Calculate the mean of  dierences. 

Calculate the unbiased estimate of  the 

standard deviation.

Find the degrees of  freedom and use a  

GDC to nd the characteristic value of  t.

Use the formula d

c

s

n

d t± ×

Store data into lists and nd the dierences. 

Apply the t-condence interval with data in 

the dierence list.

*Unsaved  

A
a b

B C D

1

2

3

4

5

60

58

47

80

35

–3

3

5

4

6

63

55

42

76

29

=a[]-b[]

C =a b

1.21.1
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In the previous example, the 90% condence interval contains both negative 

and positive values, so we cannot say at this level of  condence that 

there is a dierence between the eects of  drugs A and B. Sometimes in 

such a case we can do another hypothesis test that can give us more 

reasonable and conclusive results. You will learn more about this in 

Example 6.

Exercise 3D

1 Given two sets of  data in the following tables, calculate the dierences  

and nd the (1 – )% condence interval for the mean of  the  

dierences:

a
Set A 5 7 23 7 8 20 9 6 6 2

Set B 8 5 23 9 5 8 20 5 8 22

α = 0 01;

b
Set C 98 03 02 88 96 05 0 93 02 06 99 85

Set D 2 5 04 96 0 2 23 02 08 09  03

α = 0 1;

c

Set E 0.55 0.7 0.66 0.58 0.82 0.77 0.9 .02

Set F 0.62 0.68 0.74 0.69 0.78 0.65 0.8 0.95

α = 0 05

2 Bob and Rick are two laboratory technicians and they measure haemoglobin  

levels (Hgb) in the same blood samples of  12 male patients. The normal level  

of  that oxygen-transport metalloprotein is between 138 and 175g/l.  

They obtained the following results in g/l:

Blood sample  2 3 4 5 6 7 8 9 0  2

Bob 44 53 70 83 25 95 48 77 60 55 70 35

Rick 4 6 73 74 9 04 35 75 64 58 67 42

a Find the dierences between the results obtained by Bob and Rick.

b Calculate a 95% condence interval of  the mean of  dierences in results  

obtained by Bob and Rick.
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3.3 Hypothesis testing

Setting up and testing hypotheses is an essential part of  statistical studies. 

In order to formulate such a test, usually a theory has been proposed but has 

not yet been proved to be true. For example, suppose a claim has been made 

that a new drug to help ght infection works better than the current drug. 

We wish to set up and test a hypothesis to determine whether this claim is true. 

Hypothesis testing always starts with a stated claim about a population  

parameter. The Mathematics Higher Level syllabus includes  

testing only for the population mean of  a random normal distribution,  

and as such our study of  this topic will be oriented thus. 

In general, when we are discussing hypotheses we consider two  

statements that are directly contradictory to each other. The process  

of  testing the hypotheses provides us with arguments as to why a certain  

hypothesis can be accepted or rejected. 

The stated hypothesis is called the null hypothesis and we denote it by H
0

and the alternative hypothesis states the opposite and is denoted by H
1

Let’s consider again the example of  broilers from  

section 3.2. Suppose that data from previous years  

suggests that the mean weight of  the broiler  

population is 2kg. We wish to estimate the mean  

weight of  broilers this year, and to do so we take  

a sample of  a certain size. The sample mean is  

found to be 2.0kg. x

f(x)

y

x

Acceptance region

Rejection regionRejection region

Critical valueCritical value

Two-tail testThe null hypothesis always states no change,  

i.e. that the mean weight of  broilers  

this year is also 2kg. We write this as ( )μ =
0

H : x

x

Acceptance region

Rejection region

Critical value x

y

One-tail upper test

The alternative hypothesis can have dierent  

statements depending on the type of  test we wish  

to perform.

There are two types of  hypothesis testing and 

three types of  the alternative hypotheses:

i Two-tail test μ ≠1(H : )x  The mean weight is 

not equal to 2kg.

ii One-tail upper test μ >1(H : )x  The mean 

weight is more than 2kg.

iii One-tail lower test μ <1(H : )x  The mean 

weight is less than 2kg.

x

Acceptance region

y

x

Rejection region

Critical value

One-tail lower test
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We must also decide which signicance level, α, we require in order 

to conclude that a certain hypothesis is valid, with ( − α) % certainty.
The most common 

signicant levels used 

are 1%, 5% and 10%.Signicace level is directly related to the condence interval, so if  

we are 95% sure that the mean value is in the calculated condence 

interval we can accept the null hypothesis at the 5% signicant level  

of  the test.

When calculating testing statistics, just as when calculating the condence 

intervals in the previous section, we will use either z-statistics or t-statistics. 

We will use z-statistics when the variance is known, and t-statistics when 

the variance is unknown (regardless of  the sample size). 

There are two ways to make a decision based upon the calculated values.

The Critical value is the z-value or t-value found on the signicance 

level of  the test. If  the calculated z- or t-value of  the test lies outside 

the so-called acceptance region, we reject the null hypothesis, 

otherwise we do not reject it.

The p-value is the probability that the parameter we’re investigating 

(i.e. the mean) lies within the rejection region, given that the null 

hypothesis is true. If  the p-value is greater than the signicance level 

we cannot say that we accept the null-hypothesis, but rather say that 

‘we have no sucient evidence to reject’, or simply ‘fail to reject’,

the null hypothesis

We have four steps in hypothesis testing:

Step 1 State the null and alternative hypothesis;

Step 2 Set the criteria for a decision;

Step 3 Calculate the statistics;

Step 4 Decide upon calculated statistics and decision criteria.

Hypothesis testing for μ when is known 

As in the calculation of  condence intervals, we are going to use 

z-statistics in hypothesis testing. Let’s look at an example for 

which we have already calculated the condence interval 

(see Example 4).
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Example 

In a certain country it is believed that the mean height of  the male population is 82cm 

and the standard deviation is 5cm. A random sample of  00 men was taken from the 

population and the mean height was found to be 83.6cm. 

a State the null and alternative hypotheses;

b Use a two-tail test at the 0% signicance level to decide whether or not the claim is true.

a H
0
: “The mean height is 82cm” ( μ = 82) 

H

: “The mean height is not 82cm” 

( 182)μ ≠

b Method I

μ σ= = = =
5

100
182, 0.5, 183.6x

μ

σ

− −
= ⇒ = =

183.6 182

0.5
3.2

x

z z

Either

1

2

0.1 (0.05) 1.645z
α

α = ⇒ =Φ =

α
> ⇒ >

2

3.2 1.645 z z

We reject the null hypothesis.

Or

P((180.4 ) or ( 183.6) 182)X X μ> > =

1 P(180.4 183.6 182)X μ= − < < =

1 P( 3.2 3.2) 0.00137Z     

0.0037<0. we reject the null hypothesis at 

the 0% signicant level.

Method II

1/99

*Unsaved 

“Title”

zTest 182, 5, 183.6, 100, 0: stat.results

“Alternate Hyp”

“z”
“PVal”

“n”

σ

“x”

“z Test”

“µ ≠ µ0”

3.2

0.001374

183.6

100.

5.

1.1 1.2

0.0037 < 0. we reject the null hypothesis.

Step 1: State the null hypothesis that 

conrms the claim. State alternative 

hypothesis.

Step 2: Calculate the z-value. 

Step 3: Find the z-critical value. 

Step 4: Compare the z-critical value with the 

calculated value and make a decision.

Step 3: For the calculated z value nd the 

corresponding p-value.

Step 4: Compare the p-value with the 

signicant level and make a decision.

Use z-test statistics feature on a GDC

0/99

*Unsaved 

z Test

182

5

183.6

100n:

ok Cancel

σ

µ0:

x:

1.1 1.2

|

Ha: µ ≠ µ0Alternate Hyp:

Compare the p-value with the signicance 

level and make a decision.
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Due to the symmetrical properties of  the condence interval and the 

acceptance region in a two-tail test, this example highlights some 

important results:

 We found the 90% condence interval for the mean of  the 

population to be [82.8, 84.4] and we see that 82 is not in this 

interval. We therefore expected to reject the null hypothesis.

 Your calculator gives you the calculated z-value “z” = 3.2, but it 

is much simpler to make a decision based upon the p-value when 

it is available.

 When we compare the p-value with each of  the common 

signicance levels (%, 5%, and 0%), we conclude that we reject 

the null hypothesis upon all three signicance levels, since 

0.0037 is smaller than each and every one of  them.

Let’s use another example for which we have already calculated the 

condence interval.

Example 

After a rainy night, 2 worms have surfaced on sand. Their lengths, measured in cm, were as 

follows: 2.0, ., 0.5, 0.8, 2., 0.4, 0.9, 2.2, 0.9, .9, .2, .6. It is known that the 

worms came from a population that follows a normal distribution with the mean value of  

0.5cm and the standard deviation of 2cm. There is a belief that the worms are growing larger.

a State the null and alternative hypotheses;

b Use a one-tail upper test at the 5% signicance level to decide whether or not the claim 

is true.

a H
0
: “The mean length is 0.5cm” μ =( )10 5

H

: “The mean length is larger than  

0.5cm” μ >( )10 5

b Method I

μ σ= = = =
2

12
10.5, 0.577, 11.3x

μ

σ
= ⇒ = =

11.3 10.5

0.577
1.38564

x

z z

Either

α = ⇒ = ( ) =0 05 0 05 1 645
1

. . .z
c

Φ

1 38564 1 645. .< ⇒ <z z
c

We have no sucient evidence to reject the null 

hypothesis.

Or

( )P( 11.3 10.5) P 1.38564x zμ> = = >

= 0.0829

Step 1: State the null hypothesis that 

conrms the claim. State the alternative 

hypothesis.

Step 2: Calculate the z-value. 

Step 3: Find the z-critical value. 

Step 4: Compare the z-critical value with 

the calculated value and make a decision.

Step 3: For the calculated z-value nd the 

corresponding p-value.

We calculated 

the condence 

interval in Example 5
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Since 0.0829 > 0.05 we have no sucient evidence 

to reject the null hypothesis at the 5% signicance 

level.

Method II

1/99

*Unsaved 

“Title”

“Alternate Hyp”

“z”

“n”

“SX := Sn–1X”

σ

“PVal”

“x”

“z Test”

“µ > µ0”

1.38564

0.082928

11.3

0.636753

12.

2.

1.1 1.2

0.0829 > 0.05 we have no sucient evidence to  

reject the null hypothesis at the 5% signicance level.

Step 4: Compare the p-value with the 

signicance level and make a decision.

Use z-test data feature on a GDC to nd 

the p-value.

0/99

*Unsaved 

z Test

10.5

2

a

1Frequency List:

ok Cancel

σ

µ0:

List:

Ha: µ > µ0Alternate Hyp:

Compare the p-value with the signicance 

level and make a decision.

Condence interval analysis cannot be compared to the results obtained 

through one-tail hypothesis testing (upper or lower), since a condence 

interval is symmetric about the mean, whereas an acceptance or rejection 

region for one-tail testing is not symmetric.

When we compare the p-value in Example 3 with the three common 

signicance levels (%, 5%, and 0%) it’s clear that we reject the null hypothesis 

only upon the 0% signicance level (0.0829 < 0.), whilst upon the remaining 

two signicance levels we have no sucient evidence to reject the null 

hypothesis (since 0.0829 > 0.05 and 0.0829 > 0.0).

Exercise 3E

1 It is believed that a random sample of  n observations is taken from the 

population with the mean value μ
0
 and the standard deviation σ .  

The sample has the mean value of  x−. Given the hypotheses 

μ μ μ μ= ≠
0 0 1 0

H : , H :  test the claim at the α  signicance level if:

a μ σ α= = = = =020, 10, 12, 2 and 0.1n x ;

b μ σ α= = = = =025, 2, 1.9, 0.3 and 0.05n x ;

c μ σ α= = − = − = =0119, 235, 238, 12.8 and 0.01n x

2 It is believed that a random sample of  n observations is taken from the 

population with the mean value μ
0
 and the standard deviation σ .  

The sample has the mean value of  x−. Given the hypotheses

μ μ μ μ= <
0 0 1 0

H : , H :  test the claim at the α  signicance level if:

a 020, 10, 9, 4 and 0.1n xμ σ α= = = = = ;

b μ σ α= = = = =050, 21.4, 21.2, 0.75 and 0.01n x ;

c 0119, 235, 238, 12.8 and 0.01n xμ σ α= = − = − = = . 
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3 It is believed that a random sample of  n observations is taken from 

the population with the mean value μ
0
 and the standard deviation 

. The sample has the mean value of  x−. Given the hypotheses

μ μ μ μ= >
0 0 1 0

H : , H :  test the claim at the α signicance level if:

a 020, 10, 12, 5 and 0.05n xμ σ α= = = = = ;

b μ σ α= = = = =040, 27.3, 28.0, 3.6 and 0.1n x ;

c μ σ α= = − = − = =092, 73, 71.6, 3.72 and 0.01n x

4 After a rainy period, 15 snails have been harvested in the forest. 

Their weights, measured in g, were as follows: 22, 25, 31, 35, 28, 38, 

25, 30, 35, 27, 29, 30, 34, 33, 28. It is known that snails in the forest 

came from a population that follows a normal distribution with the 

mean value of  26g and the standard deviation of  3.5g. There is a 

belief  that the harvested snails are not from that population.

a State the null and alternative hypotheses.

b Use an appropriate test at the 1% signicance level to decide 

whether or not the claim is true.

5 A company claims that the level of  fat in 100 ml of  a lactose free 

drink is 1.4g with the standard deviation of  0.3g. In a sample of  

eight drinks the following levels of  fat were measured: 1.43, 1.52, 

1.35, 1.38, 1.42, 1.46, 1.45, 1.55. There is a belief  that the company 

is producing a lactose free drink with more fat. 

a State the null and alternative hypotheses.

b Test at the 5% signicance level whether or not the claim is true.

6 An eco-farm produces 100% pure apple juice. They package juice 

in bottles that they claim have a volume of  300ml and a standard 

deviation of  7.3ml. A box of  20 bottles is taken for inspection and 

the following volumes (in ml) were measured:

295, 288, 293, 301, 302, 285, 288, 290, 305, 300,  

298, 299, 289, 304, 302, 290, 288, 300, 293, 305. 

There is a belief  that the bottles contain less volume than stated.

a State the null and alternative hypotheses.

b Test at the 10% signicance level whether or not the claim is true.

Hypothesis testing for μ when  is unknown 

As with calculations of  condence intervals, if  we do not know  

the standard deviation when hypothesis testing we use  

t-statistics, irrespective of  the sample size.

We have already 

found the 

condence interval for 

this instance in 

Example 7.
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Example 

A chocolate company claims that the energy level in certain 00g chocolates is 2500kJ.  

In a sample of  ve 00g chocolates the mean value of  the energy level was found to  

be = 2540x kJ, whilst the estimate for population standard deviation was s =120kJ. 

a State the null and alternative hypotheses;

b Test at the % signicance level whether or not the claim is true.

a H
0
: “The energy level is 2500kJ” ( 2500)μ =

H

: “The energy level is not 2500kJ” ( 2500)μ ≠

b Method I

2540 2500

120

5

0.7454
x

s

n

t t
μ− −

= ⇒ = =

Either

n t
c

= ⇒ = = ⇒ =5 4 0 01 4 604 , . .

0 7454 4 604. .< ⇒ <t t
c

We have no sucient evidence to reject the null 

hypothesis at the % signicance level.

Or

P((2460 ) or ( 2540) 2500)X X μ> > =

1 P(2460 2540 2500)x μ= − < < =

1 P( 0.74536 0.74536) 0.497t     

0.497 > 0.0 we have no sucient evidence to 

reject the null hypothesis at the % signicant level.

Step 1: State the null hypothesis that 

conrms the claim. State the alternative 

hypothesis for a two-tail test.

Step 2: Calculate the t-value. 

Step 3: Find the t-critical value. 

Step 4: Compare the t-critical value with 

the calculated value and make a decision.

Step 3: For the calculated t value nd the 

corresponding p-value.

Step 4: Compare the p-value with the 

signicant level and make a decision.

Method II

1/99

*Unsaved 

“Title”

“Alternate Hyp”

“t”

“df”

“SX := Sn–1X”

“n”

“PVal”

“x”

“t Test”

“µ ≠ µ0”

0.745356

0.497471

4.

2540.

120.

5.

1.1

0.497 > 0.0 we have no sucient evidence to 

reject the null hypothesis at the % signicant level.

Use t-test stat feature on a GDC.

0/99

*Unsaved 

t Test

2500

2540

120

5|n:

ok Cancel

µ0:

Sx:

x:

Ha: µ ≠ µ0Alternate Hyp:

1.1

Compare the p-value with the 

signicance level and make a decision.
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Due to the symmetrical properties of  the condence interval and the 

acceptance region in a two-tail test, this example highlights some 

important results:

● We found the 90% condence interval for the energy level in 

00g chocolates to be [2293, 2787] and we see that 2500 lies 

within this interval. Therefore, we do not have enough 

evidence to reject the null hypothesis.

● Your calculator gives you the calculated t-value “t” = 0.745, 

but it is much simpler to make a decision based upon the 

p-value.

● When we compare the p-value with each of  the common 

signicance levels (%, 5%, and 0%), we conclude that we 

have no evidence to reject the null hypothesis upon every  

one of  these three signicance levels since 0.497 is larger  

than each.

Example 

In a box of  six eggs, the weights (measured in grams) of  each egg were as follows: 62, 63, 

65, 62, 66, 66. The farmer claims that the mean weight of  one of  their eggs is 66g. Test at 

the 5% signicance level whether the eggs in the boxes have a mean weight less than 66g. 

H
0
: “The mean weight is 66g” ( 66)μ =

H

: “The mean weight is less than 66g” ( 66)μ <

Method I

x s= =64 1 897, .

μ− −
= ⇒ = = −

64 66

1.897

6

2.582
x

s

n

t t

Either

n t
c

= ⇒ = = ⇒ = −6 5 0 05 2 015ν α, . .

− < − ⇒ <2 582 2 015. . t t
c

We reject the null hypothesis at the 5% 

signicant level.

Or

P( 64 66)x μ< =

P( 2.582 ) 0.02466t− < =

0.02466 < 0.05 therefore we reject the null 

hypothesis at the 5% signicant level.

Step 1: State the null hypothesis that 

conrms the claim. State alternative 

hypothesis for a one-tail lower test.

Step 2: Calculate the t-value. 

Step 3: Find the t-critical value.

Step 4: Compare the t-critical value with the 

calculated value. Notice that t lies outside 

the acceptance region so we make a 

decision.

Step 3: For the calculated t-value nd the 

corresponding p-value.

Step 4: Compare the p-value with the 

signicance level and make a decision.

We calculated 

the condence 

interval for the 

following problem 

when we studied 

Example 9.
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Method II

1/99

*Unsaved 

“Title”

“Alternate Hyp”

“t”

“df”

“SX := Sn–1X”

“n”

“PVal”

“x”

“t Test”

“µ < µ0”

–2.58199

0.024657

5.

64.

1.89737

6.

1.21.1

0.024657 < 0.05 therefore we reject the null 

hypothesis that the mean weight is 66g at the  

5% signicance level.

Use t-test stat feature on a GDC to nd  

the p-value.

0/99

*Unsaved 

t Test

66

a

1Frequency List:

ok Cancel

µ0:

List:

1.2

Ha: µ < µ0Alternate Hyp:

1.1

As with z-testing, condence interval analysis for a t-distributed 

variable cannot be compared to the results obtained through one-tail 

hypothesis t-testing (upper or lower), since a condence interval is 

symmetric about the mean, whereas an acceptance or rejection 

region for one-tail t-testing is not symmetric.

Exercise 3F

1 A random sample of  n observations is taken from the  

population with the mean value μ
0
. The sample has the mean 

value of  x  and an unbiased estimate of  the population standard 

deviation s. Given the hypotheses μ μ μ μ= ≠
0 0 1 0

H : , H :  test the 

claim at the α signicance level if:

a μ α= = = = =010, 5, 4.8, 1.3 and 0.01n x s ;

b μ α= = = = =025, 2, 1.9, 0.3 and 0.1n x s ;

c 07, 36, 35.3, 0.523 and 0.05n x sμ α= = − = − = =

2 It is believed that a random sample of  n observations is taken 

from the population with the mean value μ
0
. The sample 

has a mean value of  x  and the unbiased estimate of  the 

population standard deviation is s. Given the hypotheses 

μ μ μ μ= <
0 0 1 0

H : , H :  test the claim at the α signicance  

level if:

a μ α= = = = =030, 15, 14.2, 2.2 and 0.05n x s ;

b μ α= = = = =010, 122, 119.8, 2.32 and 0.01n x s ;

c n x s= = = = =6 627 622 8 12 6 0 10, , . , . .μ α and .
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3 It is believed that a random sample of  n observations is taken from 

the population with the mean value 
0
. The sample has the mean 

value of  x  and the unbiased estimate of  the population standard 

deviation s. Given the hypotheses μ μ μ μ= >
0 0 1 0

H : , H :  test the 

claim at the α signicance level if:

a n x s= = = = =20 1 0 95 0 335 0 10, , . , . .μ α and ;

b n x s= = = = =8 25 26 4 1 12 0 050, , . , . .μ α and ;

c n x s= = = = =15 754 758 6 14 2 0 010, , . , . .μ α and 

4 An ice-cream factory claims that the average volume of  a 

particular ice-cream product is 120ml. There are eight ice-creams 

in a box and their volumes in ml are as follows:

119, 123, 121, 120, 118, 116, 123, 122. State the hypotheses 

and test at the 1% signicance level whether or not the factory 

advertised the correct volume.

5 A manufacturer claims that the life expectancy of  an  

LED lamp is 30,000 hours. A random sample of  six  

LED lamps is tested and the following data is obtained:

29,500 28,350 30,300 30,250 29,350 29,600

State the hypotheses and test at the 10% signicance  

level whether or not the manufacturer claims a longer  

life expectancy of  the LED lamps. 

Signicance testing for matched pairs

In Example , we studied how to use condence intervals to 

compare the data obtained in a matched pairs study. Example 6 will 

illustrate how to use signicance testing to compare the same data.

Example 

A group of  patients at a hospital suer from chronic iron deciency. They are treated with 

two new drugs: drug A and drug B. First, they are treated with drug A and, after a few 

days, when the inuence of  drug A has worn o, they are treated with drug B. A serum 

iron test is conducted and the results (in g dl/ ) are given in the following table:

Patient a b c d e f g h

Drug A 60 58 47 80 35 55 53 40

Drug B 63 55 42 76 29 6 5 4

a Find the dierences between the results obtained by drug A and drug B;

b State the hypotheses and test at the 0% signicance level whether or not there is a 

dierence between the eects of  these two drugs.

In some countries the comma is 

used every three decimal places 

for making numbers with many digits 

easier to read. In other countries, a 

space is used instead of the 

comma. In some computer 

programming languages, an 

underscore is used.
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a d
i
= A−B −3 3 5 4 6 −6 2 −

b H
0
: “There is no dierence in drug eect” 

μ
d
=( )0

H

: “There is a dierence in drug eect” 

μ
d
≠( )0

Method I

1.25, 4.200
d

d s= =

t t
d

s

n

d

   
 μ 1 25 0

4 200

58

0 842

Either

8 7, 0.1 1.895
c

n tν α= ⇒ = = ⇒ =

0 842 1 895. .< ⇒ <t t
c

We have no sucient evidence to reject the null 

hypothesis.

Or

P (( 1.25 ) or ( 1.25) 0)d d μ− > > =

1 P( 1.25 1.25 0)d μ= − − < < =

( )= − − < < =1 P 0.842 0.842 0.428t

Subtract the results of  drug B from the 

results of  drug A.

Step 1: State the null hypothesis that 

conrms the claim. State alternative 

hypothesis for a two-tail test.

Step 2: Calculate the t-value. 

Step 3: Find the t-critical value. 

Step 4: Compare the t-critical value with 

the calculated value and make a decision.

Step 3: For the calculated t-value nd the 

corresponding p-value.

0.428 > 0. we have no sucient evidence to 

reject the null hypothesis at the 0% signicance 

level.

Method II

1/99

*Unsaved 

“Title”

“Alternate Hyp”

“t”

“df”

“SX := Sn–1X”

“n”

“PVal”

“x”

“t Test”

“µ ≠ µ0”

0.841726

0.427758

7.

1.25

4.20034

8.

1.21.1

0.428 > 0. we have no sucient evidence to 

reject the null hypothesis at the 0% signicance 

level.

Step 4: Compare the p-value with the 

signicance level and make a decision.

Use a GDC to store data into lists and nd 

the dierences. Apply the t-test with data in 

the dierence list.

0/99

*Unsaved 

t Test

0

c|

1Frequency List:

ok Cancel

µ0:

List:

Ha: µ ≠ µ0Alternate Hyp:

Compare the p-value with the signicance 

level and make a decision.
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In Example , we saw that the 90% condence interval [ ]1.564, 4.064

contains both negative and positive values. We had concluded that we  

could not say at this level of  condence there was a dierence between  

the eects of  the two drugs. However, signicance testing gives us  

more information and we determine the probability that the mean lies in  

the acceptance region.

Exercise 3G

1 The times (in seconds) that it took eight players to solve two Rubik’s  

Cube puzzles are shown in the table below.

Player A B C D E F G H

Cube  22 35 4 30 28 46 52 36

Cube 2 26 38 40 34 30 44 48 28

Test at a 5% signicance level whether or not there is a dierence  

between the nishing times on the two dierent cubes.

2 Six darts players are testing darts that have a radical new ight  

design. Their scores (out of  100) are given in the table below. 

Player A B C D E F

Dart–old design 85 92 00 97 89 9

Dart–new design 90 95 98 99 93 92

Test at a 0% signicance level whether or not there is a dierence  

between the old and the new design of  dart.

3 A personal trainer at a tness club claims that members will lose  

weight after taking his aqua aerobics classes. A group of  12 students  

decided to join the programme. The table shows their weights, given  

in kg, before and after a 30-day period. 

Student A B C D E F G H I J K L

Weight before the class 55 82 63 69 65 58 88 64 72 75 90 77

Weight after the class 52 84 6 69 62 57 84 66 70 7 94 77

Test at a 5% signicance level whether or not the personal trainer’s  

advertising is fair.
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3.4 Type I and Type II errors

In this section we are going to discuss what kind of  errors we can 

make in the statistical testing we have studied. Let’s start by noting 

that every null hypothesis can in fact have two possible values if  we 

think of  them as statements: true or false

● We say that we make a Type I error when we fail to reject a 

false null hypothesis

● We make a Type II error when we reject a true null 

hypothesis

A real-life example of  these two types of  errors can be seen in a 

court trial. Sometimes an innocent person is convicted, whilst  

other times a guilty person walks free. In a democracy, as everyone 

is presumed innocent at the beginning of  a trial (our null 

hypothesis), we say that:

● Freeing a guilty person corresponds to a Type I error;

● Convicting an innocent person corresponds to a Type II error.

Reality

Null hypothesis 

is true

Null hypothesis is 

false

Decision 

based on 

collected 

data

Fail to reject 

null hypothesis

Good decision 

−α

Type I error 

(Failing to reject 

false) α

Reject null 

hypothesis

Type II error 

(Rejecting true) 

β

Good decision  

−β

In medicine, researchers perform a lot of statistical testing. In this 

area, a Type I error is known as false positive whilst a Type II error is 

known as false negative. For example we perform a test to ascertain 

whether a patient is infected with a certain virus. The false positive means 

that the test has shown that the patient does have a viral infection but they 

are actually not infected by the virus. A false negative means that the test 

hasn’t shown viral presence in the patient’s body, but they actually are 

infected by the virus. If we are wondering which type of error is better to 

make, we can see from this medical example that although a false positive 

might cause a patient to worry, eventually due to the lack of viral symptoms, 

combined with results of different tests, the patient will nd out that nothing 

is wrong with their health. On the other hand, a false negative will give a 

patient a false assurance that nothing is wrong with their health, and since 

the virus will not be treated, it can have serious consequences for the 

health of the patient. We can thus conclude that a Type II error is less

desirable than a Type I error.

The probability of 

making a Type I error 

or the area of the 

rejection region is 

denoted by α. The 

probability of making 

a Type II error is 

denoted by β. The 

value of 1 – β is called 

the power of the test.
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Suppose we roll a die 20 times and do not roll a six. 

Our null hypothesis is that the die is fair, and the alternative hypothesis is that the  

die is biased.

Even though the probability of  obtaining no sixes in 20 rolls of  the die is fairly small  

(p = 0.026), it is certainly possible.

● A Type I error might occur when the die is actually fair  

(i.e. the null hypothesis is true), but we reject the null  

hypothesis and conclude that the die is biased.

● A Type II error might occur when the die is indeed biased  

(i.e. the null hypothesis is false), but we accept the null  

hypothesis and conclude that the die is fair.

Example 

There are two coins. One coin is fair and one coin is biased so that the probability of obtaining 

a “head” with this coin is p =

2

3
. We take one of these two coins and ip it four times. 

The variable X denotes the number of “heads” on the fair coin and the variable Y denotes 

the number of “heads” on the biased coin. 

a Find probability distribution tables for both coins.

The null hypothesis H
0
 is “the selected coin is fair” whilst the alternative hypothesis H


 is “the 

selected coin is biased”. We decide that we are going to reject the null hypothesis if  we obtain 

four “heads”.

b Find the probability of  obtaining a Type I error;

c Find the probability of  obtaining a Type II error.

a Fair coin:

X = x 0  2 3 4

P(X = x)
1

16

4

16

6

16

4

16

1

16

Biased coin:

Y = y 0  2 3 4

P(Y = y)
1

81

8

81

24

81

32

81

16

81

Use the binomial PDF:

( )
4 x x

4 41 1 1

x x2 2 16
P X x= = =⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

Use the binomial PDF:

( )
4 y y y

4

4 41 2 2

y y3 3 3
P Y y == = ⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠

b α = ( )= =
0

1

16
P 4 HX

c β = ( )≠ = − =
1

16 65

81 81
P 4 H 1Y

Type I error is when we reject the null 

hypothesis when it is actually true.

Type II error is when we fail to reject the null 

hypothesis when it is false.

Notice that we could have decided to reject the null hypothesis for a dierent  

event, for instance if  we obtain no “heads”. In that case the probability of   

making a Type I error will remain the same = =0

1

16
P( 0 H )X , but the probability  

of  making a Type II error will increase, ≠ = − = >1

1 80 65
)

81 81 81
P( 0 H 1Y , as expected.  
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Since the probability of  making a Type II error is smaller in example 7 

than it is in the instance of  obtaining no “heads”, we can conclude that the 

test where we reject the null hypothesis when we obtain four heads is a 

better test than when we reject the null hypothesis after obtaining no heads.

Example 

Let’s assume that X ~ Po(30) and we test this null hypothesis against the hypothesis that 

the parameter of  the distribution is greater than 30. The acceptance region for the null 

hypothesis contains all the x values less than or equal to 35.

a Find the probability of  a Type I error;

b It was found that the actual value of  the parameter was 40. Find the probability of   

a Type II error;

c If  we expand the acceptance region to all the x values less than or equal to 38, nd the 

probabilities for both Type I and II errors. What can you conclude?

a P( 36 30)X mα = ≥ =

1 P( 35 30) 0.157X m= − ≤ = =

b P( 35 40) 0.242X mβ = ≤ = =

c P( 39 30)X mα′ = ≥ =

1 P( 38 30) 0.0648X m= − ≤ = =

P( 38 40) 0.416X mβ′ = ≤ = =

We notice that Type I and Type II errors 

are connected, so when we decrease a 

Type I error we increase a Type II error.

H
0

: X ~ Po (30)

Use a GDC to nd the probability.

H
1

: X ~ Po (40)

Use a GDC to nd all the probabilities.

4/99

Scratchpad  

0.1573831–poissCdf(30, 0, 35)

0.242414poissCdf(40, 0, 35)

0.0648441–poissCdf(30, 0, 38)

0.416024poissCdf(40, 0, 38)

α α β β> ′⇒ < ′

Example 9

Let’s assume that X
1

4
B 100,∼  and we test this null hypothesis against the hypothesis 

that the probability p ≠
1

4
. The acceptance region for the null hypothesis contains all the x

values that are within 8 of  the expected value of  X

a Find E(X ) and the probability of  a Type I error;

b It was found that the actual value of  the probability was p =

2

5
. Find the probability of   

a Type II error;

c If  we expand the acceptance region of  the null hypothesis to all the x values that are 

within 6 of  the expected value, nd the probabilities for both Type I and II errors.  

What can you conclude?



Chapter 3 115

a ( )
1

4
E 100 25X = × =

( ) ( )α = ≤ ≥ =
1

4
P 16 34X or X p

⎛ ⎞
= − ≤ ≤ = =⎜ ⎟

⎝ ⎠

1

4
1 P 17 33 0.0487X p

b β ⎛ ⎞= ≤ ≤ = =⎜ ⎟
⎝ ⎠

2

5
P 17 33 0.0913X p

c ( ) ( )α′ = ≤ ≥ =
1

4
P 18 32X or X p

⎛ ⎞
= − ≤ ≤ = =⎜ ⎟

⎝ ⎠

1

4
1 P 19 31 0.132X p

β ⎛ ⎞′ = ≤ ≤ = =⎜ ⎟
⎝ ⎠

2

5
P 19 31 0.0398X p

Again we notice that Type I and Type II 

errors are connected, but this time when we 

increase a Type I error we decrease a  

Type II error.

Apply the formula for binomial  

distribution E(X) np=

H
0
: ,

1

4
X B 100∼

Use a GDC to nd the probability.

H
1
: ,

2

5
X B 100∼

Use a GDC to nd all the probabilities.

4/99

Scratchpad  

0.0487051–binomCdf(100, 0.25, 17, 33)

0.091253binomCdf(100, 0.4, 17, 33)

0.132361–binomCdf(100, 0.25, 19, 31)

0.039846binomCdf(100, 0.4, 19, 31)

α α β β< ′⇒ > ′

The calculations we performed in Examples 8 & 9 can be seen  

visually in the following two normal distribution graphs.

Normal distribution graph for a one-tail test

10 2 3

αβ

x

y

Critical

value

H
0

H
1

The diagram demonstrates that by moving the critical value vertical line 

● to the right, we decrease Type I error but at the same time we 

increase Type II error;

● to the left, we increase Type I error but at the same time we 

decrease Type II error.

Despite the distributions 

not being normal in 

Examples 18 & 19, we 

can still approximate 

both binomial and 

Poisson distributions by 

a normal distribution.
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Two-tail test

1
0 x

y
H
0

H
1

Critical

value

Critical

value

2
βα

2

α

Again, this diagram demonstrates that by moving the critical value 

vertical lines simultaneously (notice that when we move one vertical 

critical value line to the left, the other one is moved to the right, so 

that the critical values are symmetric about H
0
) the following occurs:

● When we decrease Type I error, we simultaneously increase 

Type II error;

● When we increase Type I error, we simultaneously decrease 

Type II error.

Exercise 3H

1 We believe that a normal random variable, X, is distributed 

such that X ~ N(5, 0.42). We test this null hypothesis against the 

hypothesis that the mean μ ≠ 5. The acceptance region for the 

null hypothesis is {4.2 ≤ X ≤ 5.8}

a Find the probability of  Type I error.

b It was found that the actual mean value was μ = 4.5.  

Find the probability of  Type II error.

2 Let’s assume that X
1

2
B 50,∼  and we test this null  

hypothesis against the hypothesis that the probability p >
1

2
.  

The acceptance region for the null hypothesis is {X ≤ 30}.

a Find E(X ) and the probability of  Type I error.

b It was found that the actual value of  the probability  

was p =

4

7
. Find the probability of  Type II error.

3 Let’s assume that X ∼Po 45( ) and we test this null hypothesis 

against the hypothesis that the parameter of  the distribution is 

less than 45. The acceptance region for the null hypothesis  

is X ≤{ }52 .

a Find the probability of  Type I error.

b It was found that the actual value of  the parameter was 40. 

Find the probability of  Type II error.
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Review exercise 
EXAM-STYLE QUESTIONS

1 A box of  20 salmon is bought from a sh farm. The mean weight  

of  a salmon was found to be 652g and the farm owner states that the  

standard deviation of  salmon he produces is 114g. 

a Find the 95% condence interval for the mean weight of  salmon  

produced at the farm. 

b Find the 99% condence interval for the mean weight of  salmon  

produced at the farm. 

c Comment on the signicance level and the width of  the  

condence interval.

2 In a medical laboratory the level of  potassium in blood is measured  

by two types of  biochemical analyzers. The range of  the potassium  

level in the blood of  a healthy person is between 270 and 390 mg/dl.  

The table below lists the measured levels of  potassium, given in  

mg/dl, for 10 patients.

Patient A B C D E F G H I J 

Analyzer I 235 352 40 280 34 325 428 388 272 30 

Analyzer II 237 343 46 272 336 329 43 396 265 35 

a Find the dierences between the results obtained by the two  

analyzers. 

b State the hypothesis and test at a 1% signicance level whether  

or not there is a dierence in measurement of  the two types of   

biochemical analyzers.

3 Fifteen independent observations of  a random sample are taken from a normal 

population. The sample gave the results and

= =

= =∑ ∑
15 15

2

1 1

80 488.
i i

i i

x x

a Calculate the unbiased estimates of  the mean and variance for the  

given observations.

b Find a 99% condence interval for the population mean.

c Interpret the meaning of  the condence interval at the given level.

4 The measurement of  six independent random measurements may  

be assumed to follow a normal distribution with the mean value  

μ and the variance σ 2 = 25. Given that the condence interval  

for the mean is found to be [47.2, 55.2], nd: 

a the mean value of  the sample;

b the condence level of  the interval.
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5 An automotive instrument manufacturing company claims that  

their speedometer shows the exact speed at which the car is  

driving. A random sample of  ten cars was taken and they were  

tested on part of  a straight 1km racing track with the autopilot  

set at 120km/h.

a If  the claim is true, how long would it take each car to travel  

the 1 kilometer track?

The times measured in seconds were as follows: 31.2, 30.8, 30.4,  

30.8, 31.3, 32.1, 30.3, 31.4, 30.9, and 30.5.

b Calculate the unbiased estimate of  the mean and variance of  the  

measured times.

An auto magazine claims that due to safety reasons the company  

deliberately sets up the speedometers to show a higher speed.

c State the hypothesis and test the claim at the 5% signicance level.

6 The measurement of  n independent random measurements may be  

assumed to follow a normal distribution with the unbiased estimate  

of  population variance s2 = 144. Given that the 95% condence interval  

for the mean is found to be [204, 216] nd:

a the mean value of  the sample; 

b the sample size n

7 A radar records the speed, v, in kilometres per hour, of  bicycles on a  

bicycle lane. The speed of  these bicycles is normally distributed.  

The results for 150 bicycles are recorded in the following table.

Speed Number of  

bicycles

0 ≤ v <0 9

0 ≤ v <20 56

20 ≤ v <30 47

30 ≤ v <40 25

40 ≤ v <50 3

a For the bicycles on the bicycle lane, calculate

i an unbiased estimate of  the mean speed;

ii an unbiased estimate of  the standard deviation of  the speed.

b For the bicycles on the bicycle lane, calculate

i a 95% condence interval for the mean speed;

ii a 90% condence interval for the mean speed.

c Explain why one of  the intervals found in part b is a subset  

of  the other.
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8 A population follows a normal distribution with the following  

parameters N( , 2 = 2). Let’s assume that μ = 10 to test the  

following hypotheses:

H
0
 :  = 10

H
1
 :  < 10, 

using the mean of  a sample of  size 5.

a Find the appropriate critical regions corresponding to a signicance  

level of

i 0.1; ii 0.05.

b If  the actual population mean is 9.3, calculate the probability  

of  making a Type II error when the level of  signicance is 

i 0.1; ii 0.05.

c Explain the change in the probability of  a Type I error related to  

the change in the probability of  a Type II error.
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Chapter  summary
Estimator and estimate

A random variable T is called an unbiased estimator for the population parameter θ

if  E(T ) = θ

A specic value of  that random variable is called an estimate

Given two estimators T

 and T

2
 of  the population we say that T


 is a more ecient 

estimator than T
2
 if  Var (T


) < Var(T

2
).

X
X

n

i

i

n

=
=

∑
1

 is unbiased estimator for μ. S
X X

n

i

i

n

2

2

1 1
=

( )
=

∑  is unbiased estimator for σ 2

2 2

2 1

( )

1

n

i

i

x n x

n
S

==
∑

 or s
n

n

2

1

2
= σ

Condence interval for mean μ of population

i) When the population standard deviation σ  is known x z x z

n n

− × + ×
⎡

⎣
⎢

⎤

⎦
⎥

σ σ
α α

2 2

,

ii) When the population standard deviation σ  is unknown x t x t
s

n

s

n
c c

− × + ×
⎡

⎣
⎢

⎤

⎦
⎥,

where t invt
c
= −

⎛

⎝
⎜

⎞

⎠
⎟1

2

α
ν,

Condence interval for matched pairs

Calculate the dierences between the observations and then nd the condence interval 

for the mean of  dierences.

Hypothesis testing

There are two types of  hypothesis testing and three types of  the alternative hypotheses:

i) Two-tail test μ ≠1(H : )x

ii) One-tail upper test μ >1(H : )x

iii) One-tail lower test μ <1(H : )x

There are four steps in hypothesis testing:

Step 1 State the null and alternative hypothesis;

Step 2 Set the criteria for a decision;

Step 3 Calculate the statistics;

Step 4 Decide upon calculated statistics and decision criteria.

Hypothesis testing for μ when  is known 

We use z-statistics in hypothesis testing.

Hypothesis testing for μ when  is unknown 

We use t-statistics in hypothesis testing regardless the sample size.
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Signicance testing for matched pairs

We calculate the dierences between the observations and then use t-statistics in 

hypothesis testing regardless the sample size.

Type I and Type II errors

● We say that we make a Type I error when we fail to reject a false null hypothesis

● We make a Type II error when we reject a true null hypothesis

Reality

Null hypothesis  

is true

Null hypothesis  

is false

Decision 

based on 

collected 

data

Fail to reject 

null hypothesis

Good decision

 − α

Type I error

(Failing to reject false) 

Reject null 

hypothesis

Type II error

(Rejecting true)

β

Good decision

 − β

One-tail test

1
0

2 3

αβ

x

y

Critical

value

H
0

H
1

Two-tail test

1
0 x

y H
0

H
1

Critical

value

Critical

value

2
βα

2

α
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Statistical  
modeling4

CHAPTER OBJECTIVES:

7.7 Introduction to bivariate distributions; covariance and (population) product 

moment correlation coefcient ρ; proof that ρ = 0 in the case of independence 

and ρ = ±1 in the case of a linear relationship between X and Y; denition of 

product moment correlation coefcient R in terms of n paired observations on  

X and Y. Its application to the estimation of ρ; informal interpretation of r, 

the observed value of R and scatter diagrams; use of the t-statistic to test the 

null hypothesis ρ = 0; knowledge of the facts that the regression of X on  

Y (E(X )|Y = y) and Y on X (E(Y )|X = x) are linear; least-squares estimates of these 

regression lines; the use of these regression lines to predict the value of one of 

the variables given the value of the other.

Before you start

1 Use Expectation Algebra, e.g. If  X and Y are 

two independent random variables, nd:

E(2X − Y ) = 2E(X ) − E(Y );

Var(2X − Y ) = 22Var(X ) + Var(Y )

= 4Var(X ) + Var(Y ).

2 Find the mean and variance  

of a data set using the formulae, 

e.g. nd the mean and variance 

of  the following variables: 

X Y

5.7 −2.

7. −3.3

2.3 0.9

3.9 .2
2

2

21 1

1

( )

; Var( )

n n

i i n

i i i

i

x x x
x

n n n
xx X

= =

=

== = −

∑ ∑
∑

x = =
+ + +5 7 7 1 2 3 3 9

4
4 75

. . . .

x

n

2 2 2 2 2
5 7 7 1 2 3 3 9

4
25 85

∑
= =

+ + +. . . .

Var( ) . . .X =  =25 85 4 75 1 812

Similarly, y = −0.825, Var(Y ) = .93

3 Use the t-statistic to calculate probabilities,  

e.g. given that X ~ t (v = 6), use the GDC to nd 

the following probabilities:

a ≤ =P( 1.2) 0.862X b ≥ − =P( 0.52) 0.689X

c ≤ ≤ =P(0.3 2.5) 0.364X

1 If  X, Y, and Z are three standard 

independent normal random variables, nd:

a E(2Z − 3Y + 2X ) b Var(2Z − 3Y + 2X )

c E(XYZ )

2 a Using the formulae, nd  

X and Y, as shown in the  

table.

X Y

33 −2

49 −44

50 −23

42 −39b Using a GDC, conrm  

your values for part a

On a GDC, you can enter the data in two different 

lists, and then select from the Stats calculation 

menu, ‘2-Variable Statistics’, and see the values 

for both variables on the same screen.

3 Given that X ~ t (v) use the  

GDC to nd the following probabilities if:

a = − ≤ ≤2, P( 0.4 0.8)X ;

b = ≤10, P( 1.83)X ;

c ( )= − ≤7, P 1.75 X ;

d = −20 1 14 1 14, ( . . )P X≤ ≤
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Bivariate distributions

Today it is a generally accepted fact that smoking can lead to lung 

cancer. In the USA, it is estimated that 90% of  lung cancer deaths in 

males and about 75% in females are due to smoking. However, 50 

years ago lung cancer was a relatively rare disease, comprising only 

about % of  all malignant tumors seen in autopsies. An increase was 

seen throughout the 20th century, particularly after World War I, and 

mostly in males. A slower but equally steady increase in female 

incidence was also observed.

Initially it was thought that exposure to toxic gases released during the 

war, air pollution caused by increasing industrialization (including the 

automobile), and other such factors were causing the increase in lung 

cancer. However, countries with few eects from either the war or 

industrialization were also showing an increase in lung cancer 

incidence.

In attempting to discover the cause of  this worldwide increase in the 

disease, a common factor emerged: there was also a worldwide increase 

in the use of  tobacco. However, the general public, and in particular 

smokers and tobacco companies, were not ready to accept such a 

connection without strong scientic evidence. 

In this chapter we will examine ways of  handling data associated with 

two variables, in order to determine the nature of  the relationship 

between them. We will also be studying measures of  the degree to 
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which a change in one variable eects a change in the other, i.e. two 

variables are positively related if  one increases as the other increases, 

and two variables are negatively related if  one decreases as the other 

increases. We will look at the measures of  covariance and correlation 

which indicate how two variables are related (i.e. whether they are 

positively or negatively related) and also at the measure of  correlation 

which describes the degree to which two variables are positively or 

negatively related.

We will begin by considering the relationship of  two variables using 

their observed, or experimental, values.

4.1 Correlation

We are now going to consider two random variables, X and Y, measured 

on the same population. Each of  these variables has a distribution of  

values. The n paired observations of  X and Y form the joint distribution, 

X
i
 and Y

i
, and the graph of  the points (x

i
, y

i
) is called a scatter diagram. 

Each individual observation contains an x-value and a y-value, hence the 

data obtained is a set of  n paired observations.

For example, let us consider the widely held assumption that students 

who perform well in Mathematics also perform well in Physics, and vice 

versa. We will compare the scores of  ten students in both a Mathematics 

test and a Physics test in order to examine the relationship between these 

two variables. From the data in the table below we will draw a scatter 

graph by plotting each student’s score in Mathematics against their score 

in Physics. The table below shows the corresponding values.

Student A B C D E F G H I J

X-Mathematics score 4 37 38 39 49 47 42 34 36 48

Y-Physics score 36 20 3 24 37 35 42 26 27 29

The following scatter diagram graphically displays the Mathematics and 

Physics scores of  the ten students recorded in the table above.
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Horizontal and vertical lines that cross at the mean score for 

Mathematics (4) and Physics (3) have been added to the diagram, 

creating four quadrants. 

As the majority of  points are in the 3rd and st quadrants of  this new 

translated coordinate system, this shows us that ‘above average’ scores 

in Mathematics usually correspond to ‘above average’ scores in 

Physics, and ‘below average’ scores in Mathematics usually 

correspond to ‘below average’ scores in Physics. The diagram therefore 

indicates that there is a positive relationship between a student’s 

performance in Mathematics and Physics exams. If  we allow a line to 

follow the general trend of  the points, it would have a positive 

gradient. We say therefore that these two variables have a positive 

correlation

Let us now consider the scores for ten students in both a Mathematics 

test and a History test, and draw a corresponding scatter diagram.

Student K L M N O P Q R S T

X-Mathematics score 4 22 4 45 22 34 5 27 7 26

Y-History score 54 7 0 20 26 2 35 5 40 25

The following scatter diagram graphically displays the scores of  the 

ten students recorded in the table above.
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Again, a vertical and horizontal line are shown passing through the 

mean point (2, 25). Here the majority of  points are in the 2nd and 4th 

quadrants. This shows us that ‘above average’ scores in Mathematics 

usually correspond to ‘below average’ scores in History, and ‘above 

average’ scores in History usually correspond to ‘below average’ scores 

in Mathematics. 
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The diagram therefore indicates that there is a negative relationship 

between a student’s performance in Mathematics exams compared 

with history History exams. If  we allow a line to follow the general 

trend of  the points, it would have a negative gradient. We say 

therefore that these two variables have a negative correlation

Below is the table of  values for ten students’ scores in a 

Mathematics exam and a Photography exam, followed by a scatter 

diagram showing this data.

Student K L M N O P Q R S T

X-Mathematics score 20 22 30 45 22 45 5 27 45 26

Y-Photography score 20 48 0 20 2 38 50 35 8 25
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Here we cannot see a clear positive or negative relationship between 

a student’s test score in Mathematics compared with their test score 

in Photography. It is dicult to see a line following the general 

trend of  the points. We therefore say that these two variables have 

no correlation.

The rst two graphs indicated a possible correlation between two 

variables, but they did not reliably tell us the strength of  the 

correlation. We therefore need to calculate the correlation 

coecient, which assesses the degree of  the correlation between the 

two variables. 

To do this, we will redraw the scatter diagrams that showed 

correlation, but this time the axes will be the lines drawn through 

the mean scores i.e. the origin will be the mean point.
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This new scatter diagram shows the deviation d
x
 = x − x  (the horizontal 

distance to the vertical axis) of  the Mathematics score from the mean 

Mathematics score and the deviation d
y
 = y − y  (the vertical distance to 

the horizontal axis) of  the Physics score from the mean Physics score.

For student A, therefore, d
x
 = 4 − 4 = 0, and d

y 
= 36 − 3 = +5; 

hence, student A is represented on the graph by the point (0, 5).  

We do this for each of  the students A through J.
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We have already seen in the rst two scatter diagrams that a positive 

correlation exists if  most of  the points are either in the st and 3rd 

quadrants. Since we have redrawn the diagram with the mean as  

the origin, note that most of  the products d
x
d

y
 will be positive,  

i.e. in the st quadrant both d
x
 and d

y
 are positive, and so their  

product will be positive, and in the 3rd quadrant, both d
x
 and d

y

are negative, and so their product will also be positive.

Likewise, we have seen that a negative correlation exists if  most of  the 

points are either in the 2nd and 4th quadrants, and most of  the 

products, d
x
d

y
, will therefore be negative. 

The 3rd scatter diagram showed no correlation, since the points are 

more or less uniformly distributed in all 4 quadrants. In this case, about 

half  of  the products d
x
d

y
 will be positive, and about half  will be 

negative.

The sum of  these products of  deviations from the means is the basis of  

the correlation coecient. The only issue with this technique is that 

the size of  the correlation coecient depends on the units of  measure 

of  the variables. 

To circumvent this problem, we take the sum of  the products of  the 

deviations from the mean, and divide by the square root of  the  
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product of  the sum of  the squares of  the deviations. In doing so, the 

coecient becomes independent of  the variable’s measurement 

scales. Using one of  the above data sets, you can conrm that this 

does the trick and is independent of  the units of  measure!

Denition: The observed value r of  the sample linear correlation 

coecient is dened as 1

2 2
2 2

1 1

( )( )

( ) ( )

n

i i
x yi

n n

x y
i i

i i

x x y y
d d

d d
x x y y

r =

= =

− −

− −

= =

∑ ∑

∑ ∑∑ ∑

Values of  r near 0 indicate a weak correlation between X and Y, and 

values of  r nearer ± indicate a strong positive or strong negative 

correlation.

Correlation and causation

It is important at this point to discuss the distinction between 

correlation and causation of  two random variables, X and Y. 

Correlation between two variables appears to imply dependence,  

i.e. as one variable changes, so does the other. However, we must  

be wary not to interpret the correlation between two variables as 

causation, i.e. a change in one variable causes a change in the other. 

If  there appears to be causation, this might be mere coincidence, or 

other factors could be at work. Finding correlation is the job of  the 

statistician, but asserting causation is the job of  the specialist in  

the respective eld of  study. This will be further discussed later in 

the chapter.

On January 28 1986, millions of people watched 

the Space Shuttle Challenger break apart after just 

73 seconds into the ight. All seven crew members died, 

among them Christa McAuliffe, the rst teacher ever to be 

invited to be part of an astronaut team. The cause of the 

disaster was the failure of an O-ring on the right solid rocket 

booster that prevents hot gases escaping from the rockets 

(O-rings help seal the joints of different segments of the 

solid rocket boosters). It is now known that a leading factor 

in the O-ring failure was the exceptionally low temperature 

(about 31°F) at the time of the launch. After this disaster, 

the strength of the relationship, or the correlation, between temperature at the time of the launch 

and O-ring erosion was found to be of fundamental importance during the launch phase of a space shuttle.

In Example  below, we will use a GDC to calculate the linear 

correlation coecient, r.
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Example 

The following table shows the prevalence of  smoking, as a percent, in some states of  the 

USA and the incidence of  smoking-attributable deaths.

State X- Prevalence of  Smoking Y- Smoking attributable death rate

Alaska 42 34

California 2 8

D.C. 26 4

Florida 22 20

Georgia 5 4

Indiana 44 44

Kentucky 50 5

Missouri 38 45

New York 2 7

Rhode I. 28 27

Texas 22 28

Utah  

Data taken from: http://www.cdc.gov/tobacco/data_statistics/state_data/data_

highlights/2006/pdfs/datahighlights06table5.pdf

a Draw a scatter diagram to illustrate this data. Include the mid point, and draw an axis 

with origin at the mean point.

b Discuss the correlation between X and Y

c Use a GDC to calculate r

a
*Unsaved 1.3 1.4

smoking prevalence

d
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a
th

 r
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te
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y

x

1.5
Find ( x–, y–) and use the GDC to plot the 

points, including the mean point.
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b There is a positive correlation between X

and Y since most of  the points are in the 

st and 3rd quadrants.

c
*stats gdc 1.1 1.2 1.3

A

=LinRegMx(’xcoord,’y

m*x ≠ b1822

=

0.737714263

9.767120224

0.6223141155

0.78887

Reg...

m

b

r2

r44446

44A6

From the GDC, r = 0.789, hence the 

variables have a positive correlation.

Determine the quadrants where most points lie 

after drawing axes through the mean point.

Use a GDC to calculate the linear correlation 

coecient, r.

In the examples so far, we have considered the relationship between two 

variables using their observed, or experimental, values. If  we are, however, 

to make inferences about the correlation between measurements in an 

entire population (in order to create mathematical models), then we need to 

dene what is meant by the correlation of  two random variables, X and Y

Sampling distributions

We have considered r, the observed value of the sample linear correlation 

coecient, using n paired observations. In order to consider the correlation of  

the population, we must analyze the distribution of each r, where each sample 

will probably give a dierent r-value.

Since there are many possible samples x
i
, the distribution of random variables 

X
i
 would be the same as the distribution of the random variable X, and 

similarly the distribution of random variables Y
i
would be the same as the 

distribution of the random variable Y. The sample means, x  and y , calculated 

for all possible sample sizes will follow a sampling distribution, X  and Y . In 

the same way, all values of r calculated from all possible samples will form a 

sampling correlation coecient distribution R. Each sample correlation 

coecient can be used as an estimate of the population correlation 

coecient ρ (rho).

The sample product moment correlation coecient R, for n paired 

observations (x, y) on X and Y, is

R

X X Y Y

X X Y Y

i i

i

n

i i

i

n

i

n

=

− −

− −

=

==

∑

∑∑

( )( )

( ) ( )

1

2 2

11

.
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If  we take the numerator of  R, we can multiple out the brackets to 

obtain 
1 1

( )( ) ( )
n n

i i i i i i

i i

X X Y Y X Y XY X Y XY

= =

− − = − − + .  

Since X  and Y  are constants, this expression is equal to 

( )XY X Y Y X XY
i i i i

i

n

i

n

i

n

i

n

− − +
====

∑∑∑∑
1111

Since X Y

X

n

Y

n

i

i

n

i

i

n

= == =

∑ ∑
1 1, , therefore,

( ) ( )XY X Y Y X XY XY nXY nXY
i i i i

i

n

i

n

i

n

i

n

i i

i

n

− − + = − +
==== =

∑∑∑∑ ∑
1111 1

2

= −
=

∑ ( ) .XY nXY
i i

i

n

1

Hence, 
= =

− − = −

1 1

( )( ) ( ) ,
n n

i i i i

i i

X X Y Y X Y nXY  and an alternative 

formula for R is therefore R

XY nXY

X nX Y nY

i i

i

n

i i

i

n

=

− −

=

=

∑

∑

1

2 2 2 2

1

( )( )

We can classify the strength of  the correlation between the random 

variables X and Y by using the following general classication: 

● ±  indicates a perfect positive/negative correlation.

● 0.5 ≤ R <  indicates a strong positive correlation.

● − ≤ R ≤ −0.5 indicates a strong negative correlation.

● 0. ≤ R < 0.5 indicates a weak positive correlation.

● −0.5 < R ≤ −0. indicates a weak negative correlation.

● −0. < R < 0. indicates a highly weak correlation, or no 

correlation.

Of  course, if  R = 0, X and Y may not have a linear correlation, but 

they could have a dierent correlation, e.g. quadratic, exponential, 

sinusoidal, etc. These kinds of  correlation, however, are not part of  

this course.

 As stated earlier 

for values of r, 

the values of R near 0 

indicate a weak 

correlation between X

and Y, and values of R

nearer ±1 indicate a 

strong positive or 

negative correlation.
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Example 

Using the table below, draw a scatter diagram, and use one of  the formulae above to 

calculate the product moment correlation coecient, R, between the two random variables 

X (percentage of  economic growth rate) and Y (percentage of  Standard and Poor’s 500 

returns rate). Check this result by using a GDC to nd r, and interpret your result.

The Standard and Poor’s 500 index is a stock market index based on the total value of issued 

shares of stock of 500 publicly traded companies. The S&P 500 returns rate is the 

percentage you would have earned had you invested your money in all 500 companies.

X% of  economic growth Y% of  S&P 500 returns

.9 7.7

2.6 2.6

3.9 3.7

3.2 9.8

0.5

5

10

y

x

15

20

1 1.5 2 2.5 3

S&P Returns

3.5 4

(1.9, 7.7)

(3.2, 9.8)
(2.9, 10.95)

(2.6, 12.6)
Economic Growth

label
(3.9, 13.7)

*Unsaved 1.1

Method I

1

[( )( )]
n

i

x x y y
=

− −  = (.9 – 2.9)(7.7 – 0.95) + (2.6 – 2.9)(2.6 – 0.95) 

+ (3.9 – 2.9)(3.7 – 0.95) + (3.2 – 2.9)(9.8 – 0.95) = 5.6

( )x x

i

n

=

2

1

 = (.9 – 2.9)2 + (2.6 – 2.9)2 + (3.9 – 2.9)2 + (3.2 – 2.9)2 = 2.8

( )y y
i

n

=

2

1

 = (7.7 – 0.95)2 + (2.6 – 0.95)2

+ (3.7 – 0.95)2 + (9.8 – 0.95)2 = 22.7

×

≈
5.16

2.18 22.17
0.742r

Make sure that 

the mean point is 

included.

Using the formula 

for r, r = 0.742.
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Method II

A B C D

= TwoVar(

12.62.62

=

13.73.93

9.83.24

5

2.9

0.74223

132.18

2.35425

2.71846

501.78

43.8

10.95

4.

11.6

35.82

0.852447

0.7382416

7

8

9

10

11

12

13

14

= 22.17D26

E

sx : = sn–...

σx : = σn...

σy : = σn...

n

Σx

Σy

Σy2

Σxy

r

sy : = sn–...

Σx2

x

y

r = 0.742

There is a strong positive correlation between the two random variables.

(You will notice 

that the GDC 

gives you all the 

values necessary 

to evaluate r 

manually.)

Interpret the r 

value.

Although it was the French physicist Auguste Bravais who rst developed 

the correlation coefcient in the mid 1800s, it was the English 

mathematician Karl Pearson (1857–1936) who formalized this concept. 

He borrowed the concept of ‘moments’ from Physics, hence the name the 

‘Pearson Product Moment Correlation Coefcient’. It is the most common 

method of computing a correlation coefcient between two variables that are 

linearly related. Pearson founded the world’s rst university statistics 

department at University College London in 1911. Either r or R can be used 

for the Pearson sample product moment correlation coefcient.

Any correlation coecient must be treated with great care.  

For example, in the UK in the early 930s there was seen to be a 

statistically signicant relationship between an increase in radio 

licenses and an increase in mental illness. It would be absurd to 

assume that one is the cause of  the other; there are probably many 

other unrelated factors at work here, and so we call this a spurious 

correlation. The data may be aected by a third factor, or more factors, 

to which both X and Y are related. For example, there could be a 
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correlation between smoking and high blood pressure, however they 

could both be related to a third variable (stress level) which could 

actually be causing both the high blood pressure and the desire to 

smoke.

Hence, great caution should always be taken before asserting that a 

change in one variable causes a change in the other. Many other 

factors should be considered, and other statistical tests performed. 

This is why, as stated earlier, nding a correlation is the job of  the 

statistician, but asserting causation should be left to the specialists in 

their respective elds of  study.

Exercise 4A

For the data sets below, draw a scatter diagram, including the mean 

point and axis through the point. Calculate R for the random 

variables X and Y by using a GDC, and interpret this value.

1 The opinions of  ten people were sought regarding their levels 

of  satisfaction with how a daily newspaper (X ), and a television 

news report (Y ), informed them of  world aairs. Their levels of  

satisfaction are shown in the table below, with 1 being the lowest 

and 5 being the highest satisfaction.

X 4  3 2  2 5 4 4 2

Y   2 4 3 4 2   

2 The lengths in mm (X ) and widths in mm (Y ) of  certain leaves 

are given in the table below.

X 00 5 40 49 88 32 52 44 2 28

Y 33 38 40 5 36 40 5 43 32 42

3 The percentages scored in the same subject on two dierent tests 

are shown below. Let X be the percentage scored in Test 1, and Y

be the percentage scored in Test 2.

X 55 35 66 82 9 79 48 52 7 88

Y 58 65 52 35 36 42 60 55 50 38
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4.2 Covariance

Another statistical measure used to determine if  there is a relationship 

between two random variables is called the covariance. As the name 

implies, the covariance tells us whether or not the variables vary

together.

● A positive covariance indicates that higher than average values of  

one variable tend to be paired with higher than average values of  

the other variable.

● A negative covariance indicates that higher than average values of  

one variable tend to be paired with lower than average values of  

the other variable. 

● Zero covariance indicates that there is no correlation between  

the variance of  each variable.

In other words, we nd the sum of  the products of  the individual values’ 

deviations from the mean, i.e. the numerator of  r, and take the average 

of  this sum. This is the equivalent of  dividing the numerator of  the 

formula for r by n and we thus obtain the sample covariance: 

Cov(X, Y ) = 1

[( )( )]
n

i i

i

X X Y Y

n

=

− −∑
 or Cov(X, Y ) = 

XY

n

i

n

XY
=

∑
1

The covariance, however, is not dimensionless, i.e. it is dependent on 

the units of  the data. This means a value that represents a strong 

relationship in one unit, might not indicate the same relationship if  a 

dierent unit is used. For this reason, when we have a distribution of  

two random variables X and Y, the correlation coecient r addresses 

this issue by normalizing the covariance to the product of  the standard 

deviations of  the variables, creating a quantity between − and +  

that is independent of  units. This facilitates the comparison of   

dierent data sets.

The covariance indicates whether there is a positive or negative 

relationship, but it does not tell us anything about the strength of  the 

relationship.

If  we use the rst denition given for R,  

i.e. =

= =

− −

⎛ ⎞ ⎛ ⎞
− −⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

=
∑

∑ ∑

1

2 2 2 2

1 1

( )( )
n

i i

i

n n

i i

i i

X X Y Y

X nX Y nY

R

and divide the numerator and denominator by n and replace X  by 

E(X ) and replace Y  by E(Y ), the sums become averages.

Replacing these averages by the expected values, we obtain,

2 2

E E[ ] ( E[ ])]

E[( E[ ]) ]E[( E[ ]) ]

X X Y Y

X X Y Y

ρ
− −

− −

=
[( )

.
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The denominator is equal to Var[ ] Var[ ]X Y  . The numerator looks 

like a variance, except it contains a product of  deviation of  X and Y, 

rather than a square of  a deviation, and in fact is called the 

covariance of  X and Y, Cov(X, Y ), and the greek letter rho, ρ, is the 

population product moment coecient.

Hence, ρ =
Cov

Var

( , )

( )Var( )

X Y

X Y

Denition: For each set of  n paired observations, the covariance 

of  the random variables X and Y of  a joint distribution, Cov(X, Y ), 

is a measure of  the mean value of  the product of  the two variables’ 

deviations from their respective means, i.e.

Cov(X, Y ) = E[(X − E(X ))(Y − E(Y ))] = E[(X − μ
x
)(Y − μ

y
)],  

where μ
x
 = E(X ), μ

y
 = E(Y )

Starting with this denition we can derive an alternative one.

Cov(X, Y ) = E[(X − 
x
)(Y − μ

y
)]

= E[XY − Xμ
y
 − Yμ

x
 + μ

x 
μ

y
]

= E(XY ) − μ
y 
E(X ) − 

x 
E(Y ) + μ

x 
μ

y

= E(XY ) − μ
y 
μ

x
 − μ

x 
μ

y
 + μ

x y

= E(XY ) − μ
x 
μ

y

Properties of covariance

 Symmetry: Cov(X, Y ) = Cov(Y, X ), and Var(X ) = Cov(X, X )

The proof  of  this is left as an exercise.

 For two independent events X and Y, Cov(X, Y ) = 0. 

Proof: If  X and Y are independent variables, then 

E(XY ) = E(X )E(Y ) = μx μy
 and Cov(X, Y ) = E(XY ) − 

x
μ

y

= μ
x
μ

y
 − μ

x
μ

y
 = 0.

The converse, however, is not necessarily true: if  Cov(X, Y ) = 0,  

it does not follow that X and Y are independent. For example, let U

be the random variable ‘the number appearing on the rst throw of  

a die’, and let V be the random variable ‘the number appearing on  

the second throw of  a die’. If  X = U+V and Y = U−V, then  

E(XY ) = E(X )E(Y ); hence, Cov(X, Y ) = 0, however the random 

variables X and Y are not independent. 

Students should verify the above result as an exercise.

From the above properties, we can establish the following theorems:

Theorem : If  X and Y are independent variables, then ρ = 0.

The proof  is left as an exercise.
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Theorem 2: If  X and Y have a linear relationship, i.e. Y = mX + c, then ρ = ±.

Proof:

Y = mX + c ⇒ E(Y ) = mE(X ) + c. Hence, 

y
 = mμ

x
 + c ; Var(Y ) = m2 Var(X ).

Therefore, 

E(XY ) = E(mX 2 + cX ) = mE(X 2) + cμ
x

and, using the formula for ρ and making the substitutions above,

2 2 2

2 2 2

E( ) ( ) E( ) ( )

Var( ) Var( ) (Var( ))

x x x x x x
m X c m c m X c m u c

X m X m X

μ μ μ μ μ
ρ

+ − + + − −
= =

μ
= == = ±

2 2(E( ) ) Var( )

Var( ) Var( )
1x

m X m X m

m X m X m

Practically speaking, we can estimate ρ for the population only by using the 

correlation coecient of  a sample drawn from the population. Hence, an estimate 

for ρ is R, the sample product moment coecient.

Example 

Given that X ~ N(0, ) and Y = 2X, show that the covariance of  the joint distribution X and 

Y, Cov(X, Y ), is 2.

Cov(X, Y ) = E(XY ) – E(X )E(Y ) = E (2X 2) – E(X )E(2X )

E(2X 2) = 2E(X 2)

Var(X ) = E(X 2) – [E(X )]2 ⇒ E(X 2) = Var(X ) + [E(X )]2

Hence, 

E(X 2) = + 0 = 

Hence, Cov(X, Y ) = E(2X 2) – E(X )E(2X )  

= 2E(X 2) – E(X )2E(X ) = 2 – 0 = 2

Use denition.

Use properties of  expectation 

algebra.

Substitute E(X) = 0 and Var(X) = 1.

Evaluate.

Exercise 4B

Prove the following: 

1 Cov(X, Y ) = Cov(Y, X )

2 Cov(X, X ) = Var(X )

3 Cov(aX, Y ) = aCov(X, Y )

4 Cov Cov( , ) ( , )X bY b X Y=

5 Cov Cov Cov( , ) ( , ) ( , )X X Y X Y X Y1 2 1 2+ = +

6 Cov Cov Cov( , ) ( , ) ( , )X Y Y X Y X Y1 2 1 2+ = +

7 Var(X + Y ) = Var(X ) + Var(Y ) + 2Cov(X, Y )

8 If  X and Y are independent variables, then ρ = 0.
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4.3 Hypothesis testing

Introduction

This introduction serves to aid understanding of  the bivariate normal 

distribution, but will not be formally assessed.

Before we can determine how large the correlation coecient must 

be in order to conclude that there is a signicant correlation between 

two random variables X and Y, we will perform an appropriate 

sample statistic. We will rst, however, dene what we mean by 

bivariate normal distribution

You are already very familiar with the normal distribution for a 

single continuous random variable. We will now consider the joint 

normal distribution for two random variables X and Y

Let X and Y be two normally distributed variables, i.e. 

X N Y N
X X Y Y

∼ ∼( , ) ( , )μ σ μ σ
2 2and

Then, the bivariate normal distribution, or the joint normal 

distribution, is dened by the probability density function:

22

2

1
2

22(1 )1

2 1
( , )

X Y

y yx xy yx x

x y x y
ef x y

μ μμ μρ
σ σ σ σρ

πσ σ ρ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎝ ⎠ ⎝ ⎠ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

− −− −
− + −

=

For standardized variables, i.e. z z
x y

x y
x

x

y

y

= =
μ

σ

μ

σ
; , the bivariate 

normal PDF becomes 

2 2

2

2

2

2(1 )1

2 1
( )

x y x y

x y

z z z z

f z z e

ρ

ρ

π ρ

+ −

=

You know that the shape of  the normal distribution of  a single 

random variable is that of  a 2D bell-shaped surface. The bivariate 

normal distribution has a 3D bell-shaped surface.

0.15

0.1

0.05

0

–3
–2

–1
0

y
1

2
3 3

2
1

0

x

–1
–2

–3

You have already seen that if  X and Y are two independent random 

variables, then Cov(X, Y ) = 0 and hence ρ = 0. For X and Y having 

a bivariate normal distribution, the converse is also true.
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Furthermore, we can now state the following.

Theorem 3:

For X and Y with a bivariate normal distribution, X and Y are 

independent if  and only if  ρ = 0.

The rst part, i.e. ⇒, was already seen in Theorem . 

For ⇐, we have the denition of  a joint probability density function  

of  X and Y, i.e. 

22

2

2

1
2

2(1 )1

2 1
( , )

X Y

y yx xy yx x

x y x y

ef x y

μ μμ μρ
σ σ σ σρ

πσ σ ρ

⎡ ⎤⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎢ ⎥⎢ ⎥⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎢ ⎥⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦⎣ ⎦

− −− −
− + − +

=

Using ρ = 0 and the laws of  exponents,
22 11

221 1

2 2
( , )

X Y X Y

y yx x
yxe ef x y

μμ
σσ

πσ σ πσ σ

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠×=  = f (x) × f ( y)

Hence, any probabilities calculated from the joint distribution of  X and Y

will result in ≤ ≤ ≤ ≤ = ≤ ≤ × ≤ ≤1 2 1 2 1 2 1 2P( , ) P( ) P( )x X x y Y y x X x y Y y ,  

and therefore X and Y are independent.

t-Statistic for dependence of X and Y

For a bivariate normal distribution of  X and Y, the correlation coecient can 

be used to determine, at a given level of  signicance, whether X and Y have a 

linear correlation by determining if  ρ = 0. We will use Theorem 4 to make this 

determination.

Theorem 4:

If  X and Y have a bivariate normal distribution such that ρ = 0, then the 

sampling distribution R
n

R

2

1
2

 has the student’s t-distribution with (n − 2) 

degrees of  freedom.

This means that for any random sample of  n independent paired data from the 

joint normal distribution (X, Y ) with ρ = 0, the observed value r of  the sample 

product moment coecient R has the property that t r
n

r

=

2

1
2

,  

i.e. it is distributed as student’s t-statistic with degrees of  freedom v = n − 2.

To perform a hypothesis test with H
0
: ρ = 0 and H


: ρ ≠ 0 on a random sample 

of  n independent pairs (x
1
, y

1 
), (x

2
, y

2 
), … (x

n
, y

n 
) from a bivariate normal 

distribution (X, Y ) we:

● Calculate r, the observed value of  the sample product moment 

correlation coecient R;

● Calculate the t-statistic, t r
n

r

=

−

−

2

1
2

;

● Calculate the critical values for the indicated level of  signicance,  

or calculate the p-value.
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Example 

Test, at the 0% signicance level, whether the data from Example 2 shows signicant 

evidence of  correlation between the random variables X (percentage of  economic  

growth rate) and Y (percentage of  Standard and Poor’s 500 returns rate).

H
0
: ρ = 0; H


: ρ ≠ 0

− −

=

− −

= ≈⇒
2 2

2 4 2

1 1 0.742
1.5650.742

n
t

r

t r

For H
0
, T : t

(2)

p = P(T ≤ –.565) + P(T ≥ .565) = 0.258

*Unsaved 1.1 2.1

tCdf(–∞,–1.565,2)+tCdf(1.565,∞,2)

|

0.258054

Alternatively, using the ‘Linear Regression  

t test’ in the Stats tests menu of  the GDC, 

we obtain the following:

t

PVal

r2

df

Alternate...

b

s

SESlope...

RegEqn

Title

a

A

=LinRegtT

7.71.9

2

1

=

12.62.6

9.8

3.9

3.24

5

Linear R...

0.550906

1.51115

2.23119

2.36697

4.08578

2.

β & ρ ≠...

a+b*x

1.56634

0.25777

6

7

8

9

10

11

=“Linear Reg t Test”E1

E

Since 0.258 > 0%, we do not have enough 

evidence to reject H
0
.

Hence, there is not evidence of  signicant 

correlation between the random variables  

X and Y.

Step 1: State the null and alternative hypotheses.

Step 2: Find the value of  the test statistic.

Step 3: Using a GDC, calculate the p-value.

Conrm answers above using the GDC.

Step 4: Reading the p-value from the results, we 

compare with the signicance level and state 

conclusion.

Note: Although the r value seems relatively high, with so few data values the 

correlation is not signicant.



Chapter 4 141

Exercise 4C

1 Use the data in Example 1 to determine at the 1% signicance 

level whether the random variables show a signicant level of  

correlation.

2 Below is a table of  fathers’ and sons’ heights, in inches. 

Determine, at the 5% signicance level, if  there is signicant 

evidence of  correlation between the random variables X and Y

X-Father’s height 64 66 68 69 70 72 74

Y-Son’s height 69 64 67 64 62 73 7

3 Using the data below, determine, at the 10% signicance level, if  

there is signicant evidence of  correlation between the random 

variables X (height of  a supermodel, in inches) and Y (weight of  

a supermodel, in pounds).

Height 67 70 70 70 7 72 72 72 73

Weight 04 6 2 26 7 3 24 26 27

4.4 Linear regression

At the start of  this chapter we graphed pairs of  data sets and 

determined through the scatter diagrams whether there was a 

correlation between the two variables, and if  so, whether the 

correlation was positive or negative. If  the scatter diagrams showed 

a correlation between the two variables, we could then draw a line 

of  best t, or a line of  regression. 

The regression line of  Y on X, E(Y )|X = x, is used to estimate Y

given that the values of  X are accurate. In other words, the linear 

regression of  Y on X focuses on the conditional distribution of  Y

given X, rather than on the joint distribution of  Y and X. For 

example, X can be the price of  a particular stock, and Y might be 

the amount of  stock sold. In this case, the value of  the stock is 

known, but the number of  shares bought will vary according to the 

price. Hence, X is the independent variable, and Y is the dependent 

variable. 
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One method of  calculating  

the regression line is to nd  

the least sum of  the squares  

of  the vertical distances from  

the points, i.e. the area of  the  

squares of  the distances is  

minimized, as the gure  

below illustrates. 

y on x

(x, y)

x

y

The sum of  the squares of  the vertical distances from each point to the line  

is obtained, and the line producing the least sum is the regression line of  Y on X

Using the principle of  least squares, the Y on X regression line is  

given by the following formulae:

1 1

2 2 2

1 1

[( )( )]

( )

( ) or ( )

n n

i i i i

i i

n n

i i

i i

x x y y x y nx y

x x x nx

y y x x y y x x= =

= =

⎛ ⎞ ⎛ ⎞
− − −⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− = − − = −
∑ ∑

∑ ∑

Notice that the gradient of  the Y on X regression line is the quotient  

of  Cov(X, Y ) and Var(x)

Hence, if  the scatter diagrams show a correlation between the two  

variables, then we can draw in a line of  best t, or line of  regression,  

of  Y on X, E(Y )|X = x. This is used to estimate Y given that the  

values of  X are accurate.

The mathematician Francis Galton rst discussed the idea of  linear  

regression. In a famous study, he measured the mean height of  parents,  

and the mean height of  their children, both in inches. The following  

table includes some values from his initial research.

mean height of  

parents (X )
72.5 70.5 68.5 66.5 64.5

mean height of  

children (Y )
7.2 69.5 68.2 67.2 65.8

Mean height of parents (X)

M
e
a
n
 h

e
ig

h
t 

o
f 
ch

ild
re

n
 (

Y)

66 68 70 72
0

64

64

66

68

y = 0.755 x + 16.8625
70

72

y

x

On YouTube you can 

watch Douglas 

Butler, creator of the 

software Autograph, 

demonstrate nding the 

least squares regression 

line of Y on X

The derivation of these 

formulae is beyond the 

level of this course.
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From the entire table of  values and regression, Galton noticed  

that on average, the heights of  adults with tall parents were  

higher than the heights of  adults with short parents. More 

interestingly, he noticed that on average, adult ospring of  tall 

parents are shorter than their parents, whereas adult ospring of  

short parents are taller than their parents.

Using a GDC to calculate r, we obtain that r = 0.98, indicating a 

strong positive correlation between the variables X and Y

A

=TwoVar(

70.5

68.5

66.5

64.5

69.5

68.2

67.2

65.8

x

Σx

Σx2

sx := sn–...
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23501.3
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23518.9

0.980272
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C
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It is important to state here that the line of  best t, or line of  linear 

regression, can only be used to estimate unknown values contained 

within the interval of  the data (interpolation). For estimating any 

values outside this interval (extrapolation), an assumption that the 

pattern continues is not a valid assumption.

As you have already seen, there are dierent ways to write the 

formulae for Cov(X, Y ), Var(X ), and Var(Y ). Depending on the 

kind of  information you are given to work with, some formulae will 

be more appropriate than others.

Instead of  being given the data directly, we may be given summary 

statistics and asked to nd the line of  regression. In this case, we 

must see which formula ts the given statistics best. For example, if  

we are given the following summary statistics:

n xy x y x y= = = = = =∑∑ ∑∑∑10 906 82 103 8 100 9 1983 08 1050 67
2 2

; . ; . ; . ; . ; .

and asked to nd the regression line of  Y on X for these values, the 

formula best suited is 1

2 2

1

( )

n

i i

i

n

i

i

x y nx y

x nx

x xy y =

=

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

− =
∑

∑

For Galton’s full 

table of values and 

regression see http://

www.math.uah.edu/stat/

data/Galton.html
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Using the given values, the gradient of  the line of  regression is:

1

2

2 2

1

103.8 100.9
906.82 10

10 10

103.8
1983.08 10

10

0.1551...

n

i i

i

n

i

i

x y nx y

x nx

m =

=

⎛ ⎞
− × ×⎜ ⎟

⎜ ⎟
⎜ ⎟ ⎛ ⎞

− ×⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

= = −=
∑

∑

Hence, − = − − ⇒ = − +10.09 0.155 ( 10.38) 0.155 11.7y x y x

Most of  the time, however, we should have the data to work with 

directly, as the following example shows.

Example 

The data below shows the fuel consumption and average speed of  a typical Euro 4 

passenger car when driven on a test circuit.

X (Average speed in km/h) 0 5 20 30 35 40 45 50

Y (Fuel consumption in litres/00km) 3 0 9 7 6.6 6.2 6 6

a Justify that it makes sense to nd the line of  best t, or linear regression, for the 

variables in the table.

b Use the data to nd the equation of  the linear regression, and check your answer  

on a GDC.

c Use the equation to estimate the fuel consumption of  a typical Euro 4 passenger car 

travelling at an average speed of  25 km/h.

d Does it make sense to use the table above to nd the fuel consumption of  a car  

traveling at 80 km/h?

e Interpret your answers for this table of  values.

a
A B C D

=TwoVar(
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E1 =“Two–Variable Statistics”

E

Σx

Σx2

sx := sn–...

σx := σn...

n

y

Σy

Σy2

sy := sn–...

σy := σn...

Σxy

r

Since r ≈ −0.921, this 

indicates a strong 

negative correlation, 

hence we can draw a line 

of  best t.
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b From the GDC above, we obtain the following values:

xy x y∑ = = =1719 30 625 7 975; . ; .

n x
i

= =∑8 8975
2

; . Hence,

− × ×

− − ×
≈ −= =

∑
∑

…

2 2 2

1719 8 30.625 7.975

8975 8 30.625
0.1595

i i

i

x y nx y

x nx
m

− ⇒ − = − −− =
∑
∑

2 2
( ) 7.975 0.1595( 30.625)

i i

i

x y nx y

x nx
x x y xy y

Hence, y = −0.60x + 2.9 (to 3 s.f.)
A B C D

=LinRegMx(‘xvalues. ‘yvalues.1

Linear Regression (mx+b)

m*x+b
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c y = −0.596(25) + 2.86 = 8.87 , hence the fuel consumption 

at a constant speed of  25km/h would be about 8.9 

litres/00km.

d No, since 80 lies outside the data domain.

e Since these speeds are averages, they indicate driving in  

urban or congested areas where there is more trac, trac 

lights, and congestion in general. The car is therefore in a 

continual ‘stop-start’ mode, which causes increased  

fuel usage.

From the GDC, we see 

that the regression line is 

y = −0.160x + 12.9.

Use the equation to 

substitute for x and nd y.

Check if  the value lies 

within the data domain.

Attempt a reasonable 

explanation, assuming 

that the data is correct.

Example 

The table below continues for the following speeds of  the same test cars on the same test 

circuits.

X-Average speed in km/h 50 55 60 65 70 75 80

Y-Fuel consumption in litres/00 km 6 6 6 6 6 6. 6.

Describe and interpret the relationship between the two variables.

The line joining the points is just about parallel to the x-axis, hence its gradient is 0.

Driving at speeds allowed on priority roads, i.e. between 50 and 80km/h, the fuel 

consumption is almost constant, 6 litres/00km.
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Example 

The table below continues for the following speeds of  the same test cars on the same test 

circuits.

X-Average speed in km/h 80 85 90 95 05 0 5 20

Y-Fuel consumption in litres/00km 6. 6.3 6.4 6.4 6.6 6.7 6.8 6.9

a Justify that it makes sense to nd the line of  best t, or linear regression, for the 

variables in the table.

b Use a GDC to nd the equation of  the linear regression line.

c Use the equation to estimate the fuel consumption of  a car travelling at an average 

speed of  00km/h.

d Interpret your answers for this table of  values.

e Determine, at the 0% signicance level, if  there is a correlation between the  

average speeds and fuel consumption of  the test cars for average speeds between  

0 and 50km/h, and between 80 and 20km/h.

a H

=TwoVar(
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0.989426

L

Since r ≈ 0.989, this indicates a strong positive 

correlation, hence we can nd the regression line.

b H

=LinRegMx(‘xvalues, ‘yvalues,1):

Linear Regression (mx+b)

m*x+b
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The equation of  the line of  best t is:

y = 0.083x + 4.69 (to 3 s.f.)

c y = 0.0833(00) + 4.692 = 6.53, hence the fuel 

consumption at 00km/h is about  

6.5 litres/00km

d The speeds in the table indicate highway trac 

with little interruption, and so it makes sense that 

as speeds increase so will fuel consumption.

Use a GDC to nd r.

Use the GDC to nd the line of  best t.

If  the value is in the interval of  the data, 

then substitute for x and evaluate y.

Attempt a reasonable explanation, 

assuming that the data is correct.
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e For the data 0 ≤ X ≤ 50:

H
0
: ρ = 0; H


: ρ ≠ 0

t r t
n

r

= ⇒ = − = −
2

1

8 2

1 0 921
2 2

0 921 5 79106. .

1/99

*Unsaved 1.1

tCdf(–9.E999, –5.791, 6)+tCdf(5.791, 9.E999, 6)

0.001161

|

P( 5.791) P( 5.791) 0.00116p T T= ≤ − + ≥ =

0.006 < 0., hence we reject H
0
, since there is 

signicant evidence of  correlation between the 

random variables X and Y

For the data 80 ≤ X ≤ 20:

H
0
: ρ = 0; H


: ρ ≠ 0

− −

− −

⇒ ==
2 2

2 8 2
0

1 1 0.989426
.989426 16.71

n

r

t r

1/99

*Unsaved 1.1

tCdf(–9.E999, –16.71, 6)+tCdf(16.71, 9.E999, 6)

0.000003

|

P( 16.71) P( 16.71) 0.000003p T T= ≤ − + ≥ =

0.000003 < 0., hence we reject H
0
, since there is 

signicant evidence of  correlation between the 

random variables X and Y.

Step 1: State the null and alternative 

hypothesis.

Step 2: Find t.

Step 3: Find the p-value and conrm 

using the stats test menu of  the GDC.

Step 4: State conclusion.

Step 1: State the null and alternative 

hypotheses.

Step 2: Find t.

Step 3: Find the p-value, and conrm 

using the stats test menu of  the GDC.

Step 4: State conclusion.
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To calculate the regression line of  X on Y, we nd the least sum of  

the squares of  the horizontal distances from the points, i.e. the area 

of  the squares of  the distances is minimized.

In other words, the linear regression of  X on Y focuses on the 

conditional distribution of  X given Y, rather than on the joint 

probability distribution of  X given Y. 

x on y

(x, y)

x

y

The formula for the X on Y regression line is

1 1

2 2 2

1 1

( )( )

( ) ( )

n n

i i i i

i i

n n

i i

i i

x x y y x y nx y

y y y ny

x x y y y y= =

= =

⎛ ⎞ ⎛ ⎞
− − − ⋅⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟

− −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− = − = −
∑ ∑

∑ ∑

Notice that the gradient of  the X on Y regression line is the quotient 

of  Cov(X, Y ) and Var(Y ).

It is important to remember that both the Y on X regression line and 

the X on Y regression line pass through the mean point ( , )x y , as 

discussed in the beginning of  this chapter in drawing scatter diagrams.
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Example 

A teacher gave two dierent Statistics tests to his class with the following paired results, 

given in percentages.

X-Test 65 88 83 92 50 67 00 00 73 90 83 94

Y-Test2 52 57 78 76 30 67 96 74 65 87 78 89

The teacher would like to use these results for report card grades. One student, however, 

was absent for the rst test, but scored 52% on the second test.

a Justify that a linear regression can be used to estimate this student’s result on the rst 

test, and nd this value.

b Determine if  there is signicant correlation at the 5% signicance level between the  

two variables.
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E1 =“Linear Regression (mx+b)”

=LinRegMx(‘yvalue

Linear Regression...

m*x+b

0.71072

31.7999

0.701019

0.837269

{–3.75732506032...

E

x = 0.707(52) + 3.8 = 68.8, hence the rst  

test’s result would have been about 69%.

Since r = 0.837, there is a strong 

positive correlation, hence we can 

nd the line of  best t.

Find the X on Y line by letting Y 

be the independent variable, and X 

the dependent.

Substitute for y to nd x.
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b H
0
: ρ = 0; H


: ρ ≠ 0

− −

− −

⇒ == ≈
2 2

2 12 2
0

1 1 (0.837)
.837 4.84

n

r

tt r

1/99

*Unsaved 1.1

tCdf(–9.E999, –4.84, 10)+tCdf(4.84, 9.E999, 10)

0.000681

|

P( 4.84) P( 4.84) 0.000681p T T= ≤ − + ≥ =

The p-value 0.00068 is less than 5%, so we reject H
0
, 

hence there is a signicant correlation between the 

random variables X and Y
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E1 =“Linear Reg t Test”

=LinRegtT

β & ρ ≠...

a+b*x

4.8422

0.000679

10.
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0.701019

0.837269

E

Since p-value = 0.00679 < 0.05, we reject H
0
.

Step 1: State the null and 

alternative hypotheses.

Step 2: Find t.

Step 3: Find the p-value using a 

GDC.

Step 4: State the conclusion

Alternatively to the above methods, 

use the ‘LinReg t-test’ under the 

stats tests menu of  your GDC, and 

you can see r, t, p-value, and 

equation of  regression line all in 

one screen.
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Exercise 4D

1 The scores of  10 students in a school physical tness test are 

shown below, with the higher scores indicating better physical 

tness. As shown in the table, the data gathered on the students 

includes height in cm, weight in kg, and age in years.

Student S-Score A-Age H-Height W-Weight

 62 0 45 44.9

2 94  50 42.

3 8 8 39 30.2

4 62 9 48 4.4

5 58 8 30 4.8

6 86 0 50 38.4

7 59  54 54.

8 72 9 40 38.6

9 54 0 53 52.4

0 60 9 20 38.6

A regression line is to be used to predict the physical tness 

scores of  students by tting S with one of  the variables A, H,  

or W. 

a By nding r for S and A, S and H, and S and W, determine 

which variable should be used with S to nd the equation of  

the regression line.

b Find the equation of  the regression line.

c Determine at the 5% level of  signicance if  the correlation 

between S and the variable you chose is signicant.

2 The body mass in grams and the heart mass in mg of  ten  

one-year-old mice are given in the table below.

Body 30 37 38 32 36 32 33 38 44 38

Heart 36 56 50 40 55 57 43 60 70 44

Justify the use of  linear regression to estimate the heart mass of  a 

one-year-old mouse whose body mass is 35g, and nd this value.
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3 The table below shows the blood pressure values of  10 adults in 

millimetres of  mercury, mm Hg. Blood pressure consists of  two 

measurements: systolic (pressure when the heart muscle contracts) and 

diastolic (pressure when the heart is at rest between beats). Assume that 

the values form a random sample from a bivariate distribution with 

correlation coecient ρ

X-Systolic 20 25 30 35 40 45 50 55 60 65

Y-Diastolic 80 90 92 98 00 03 05 08 0 0

a State a suitable hypothesis.

b Determine the product moment correlation coecient for this data 

and state its p-value.

c Interpret the p-value in the context of  the problem.

d Justify nding the line of  best t of  Y on X, and use it to estimate the 

diastolic value of  an adult who has a systolic value of  138mm Hg.

4 An experiment is performed ve times by measuring the temperatures 

needed, Y, to dissolve a certain substance that weighs X grams in a 

chemical compound. The summary statistics are: 

2
182; 200; 9850; 8390x y y xy= = = =∑ ∑ ∑ ∑

Find the regression line of  X on Y, and use it to nd the weight of  the 

substance, x grams, that will dissolve in a litre of  the chemical at 90 

degrees.

5 The summary statistics for a given data set is as follows:

n x x y y xy= = = = = =∑∑∑ ∑∑10 30 220 86 1588 580
2 2

; ; ; ; ;

Find the equations of  the regression lines a Y on X and b X on Y

Review exercise
EXAM STYLE QUESTIONS

1 It has been determined that the temperature in car tires, X (in °C), varies 

with the speed of  the car, Y (in km/h), according to a linear 

regression model. The summary statistics are given as: 

2 2
8; 440; 28,400; 606; 49,278; 37,000n x x y y xy= = = = = =∑ ∑ ∑ ∑ ∑

a Find the correlation coecient, and determine if  there is evidence  

of  signicant correlation at the 5% level.

b The speeds in the data vary from 20 km/h to 90 km/h. Using an  

appropriate regression line, estimate the tire temperature of  a  

car driving at an average speed of  55 km/h.
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2 If Var(X ) = 15 and Var(Y ) = 7 for two random variables X and Y,  

determine the largest possible covariance of  X and Y.

3 Find the smallest r value that will give signicant evidence of   

a positive correlation at the 10% signicance level when n = 20.

4 The independent random variables X, Y, and Z each have a mean  

of  0 and a variance of  σ 2. If  U = X + Y, V = X + Z, and W = X − Z,  

determine the correlation of  the following variables and determine  

if  the value found implies that the variables in each case are  

independent: a U and V and b V and W

5 The percentage of  a certain drug absorbed by the adult body was  

tested in ten patients at two dierent times, and the following  

data recorded.

st time 44.5 0.3 20. 55.0 39.6 24. 3.2 9.5 22.3 35.

2nd time 4.2 . 8.7 52.3 4.2 26.5 29.3 .2 25. 33.2

a Determine the product moment correlation coecient for this data,  

and state its p-value.

b Interpret your p-value in the context of  the problem and nd the 

equation of  the regression line.

c An 11th patient was unable to be tested the 2nd time, but had a drug 

absorption rate of  19.8 the 1st time. Predict what the  

absorption rate the 2nd time would have been for this patient.

d The next time, a group of  25 children underwent the same absorption  

tests for this drug, and it was found that the correlation coecient  

between the two dierent times was 0.532. Use a 1% signicance  

level to determine if  there is a positive correlation in the absorption  

rates between the two dierent times the drug was administered.

6 a Show that if r = 0, the two regression lines, Y on X and X on Y are 

mutually perpendicular.

b Show that if  r = ±1, the regression lines of  Y on X and X on Y are 

identical.

c Given that the equation of  the regression line of  Y on X is  

y = a + bx, where b
X Y

X
=

Cov

Var

( , )

( )
, and the regression line of

X on Y is x = c + dy, where d
X Y

Y
=

Cov

Var

( , )

( )
, show that r bd= +

if  b and d are both positive, and r bd=   if  b and d are both negative.

d If  the least squares regression line of  Y on X is given by y = 12 + 0.19x,

and the least squares regression line of  X on Y is given by x = −4.4 + 0.77y, 

nd r, the product correlation coecient.
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Chapter  summary

Denition: The observed value r of  the sample linear correlation coecient is dened as

r
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The sample product moment correlation coecient R, for n paired observations (x, y) 

on X and Y, is R

X X Y

X X Y

i i

i

n

i i

i

n

i

n

=

− −

− −

=

==

∑

∑∑

( )( )

( ) ( )

Y

Y

1

2 2

11

An alternative formula for R is R
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We can classify the strength of  the correlation between the random variables X and Y

by using the following general classication:

 ± indicates a perfect positive/negative correlation.

 0.5 ≤ R <  indicates a strong positive correlation.

 – ≤ R ≤ –0.5 indicates a strong negative correlation.

 0. ≤ R < 0.5 indicates a weak positive correlation.

 –0.5 < R ≤ –0. indicates a weak negative correlation.

 –0. < R < 0. indicates a highly weak correlation, or no correlation.

The population product moment coecient is

X X Y Y
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Cov( , )
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Denition: For each set of  n paired observations, the covariance of  the random variables 

X and Y of  a joint distribution, Cov(X, Y ), is a measure of  the mean value of  the product 

of  the two variables’ deviations from their respective means, i.e.

Cov(X, Y ) = E[(X – E(X ))(Y – E(Y ))] = E[(X – 
x
)(Y 

y
)],  

where 
x
 = E(X ), μ

y
 = E(Y )

or, Cov(X, Y ) = E(XY ) – μ
x y
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Properties of covariance

 Symmetry: Cov(X, Y ) = Cov(Y, X ), and Var(X ) = Cov(X, X )

2 For two independent events X and Y, Cov(X, Y ) = 0.

Theorem : If  X and Y are independent variables, then ρ = 0.

Theorem 2: If  X and Y have a linear relationship, i.e. Y = mX + c, then ρ = ±.

Theorem 3: For X and Y with a bivariate normal distribution, X and Y are independent

if  and only if  ρ = 0.

If  X and Y have a bivariate normal distribution such that ρ = 0, then the sampling 

distribution R
n

R

2

1
2

 has the student’s t-distribution with (n – 2) degrees of  freedom.

Using the principle of  least squares, the Y on X regression line is given by the following 

formulae:
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The gradient of  the Y on X regression line is 
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The formula for the X on Y regression line is:
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Answers
Chapter  
Skills check 

1 a Mode(X ) = −1, 1 b Mode(X ) = 1

Median, m = 1 Median, m = 2

µ = 0.95 µ = 2

σ = .72 σ = 

2 a Mode(X ) = 0 b Mode(X ) = 0

Median, m = 0.695 Median, m = 0

µ = 
3

4
µ = 0

σ = 0.487 σ = 0.342

c Mode(X ) = 3

Median, m = 4

µ = 4.6

σ = 0.839

3 a
2

3
b 2 + 2 2

4 a f ′(x) 
2

1

(2 )
, 2;

x

x= ≠

f (x)dx = −ln(2 − x) + c, x < 2

b f ′(x) = 3e3x +1; f (x)dx 3 11
e

3

x

c
+

+=

c f ′(x) 
2

3
cos ;

xπ⎛ ⎞
⎜ ⎟
⎝ ⎠

= −

f (x)dx
29

4 3
cos

x

c
π⎛ ⎞

⎜ ⎟
⎝ ⎠

= +

d f ′(x) = 4x(x2 − 2); f (x)dx 
5

34

5 3
4

x
x x c

Exercise A

1 a k = 3 b
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2 7 6

24

0, 0

( ) , 0, 1, 2

1, 2

x x

x

F x

x

x

2 a a = 10

b
29

20

0, 1

( ) , 1, 2, 3, 4

1, 4

x x

x

F x

x

⎧
⎪⎪
⎨
⎪
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<

= =

>

x

c P(X ≤ 2) = 
7

10

3 a
+⎧

⎪
⎨
⎪⎩

=
=

1

6
, 0, 1, 2

P( )
0,

x

x

X = x

otherwise

b Mode = 2

4 a
⎧
⎪
⎨
⎪⎩

=
= 25

, 1, 3, 5, 7, 9
P( )

0,

x

x

X = x

otherwise

b m = 7

5 a b = 1

b 2 2 cos
3

3

0, 0

( ) , 0

1,

x

F x x

x

π

π

⎧
⎪
⎪
⎨
⎪
⎪
⎩

<

= ≤ ≤

>

x

c P(X ≥
π

6
) = 0.732

6 a The function is well-dened if  

+∞

∞

f (x)dx = 1

b The modal value doesn’t exist.

Exercise B 

1 a P(X = 2) = 0.24 b P(X = 3) = 0.104

c P(X = 4) = 0.0625 d P(X = 5) = 0.000182

2 a P(X ≤ 4) = 0.684 b P(X > 6) = 0.000729

c P(5 ≤ X ≤ 7) = 0.158 d P(1< X ≤ 7) = 0.009

3 P(X ≤ 3) = 0.980

4 a P(X = 5) = 0.0000377 b P(X ≥ 4) = 0.000512

5 a P(X = 4) = 0.0921 b P(X ≥ 7) = 0.377

Investigation

a 0.36 b 0.0081 c 0.409

Exercise C

1 For 1B, Question 1:

a E(X ) = 1.67, Var(X ) = 1.11

b E(X ) = 7.14, Var(X ) = 43.9

c E(X ) = 2, Var(X ) = 2

d E(X ) = 1.14, Var(X ) = 0.155

For B, Question 2:

a E(X ) = 4, Var(X ) = 12

b E(X ) = 1.43, Var(X ) = 0.612

c E(X ) = 3.33, Var(X ) = 7.78

d E(X ) = 1.01, Var(X ) = 0.00916

2 a E(X ) = 1.37

b Mario must make four shots to destroy the balloon.

c 6 students

Exercise D

1 a P(X = 2) = 0.16 b P(X = 4) = 0.188

c P(X = 9) = 0.235 d P(X = 32) = 0.089

2 a P(X ≤ 4) = 0.508 b P(X > 6) = 0.109

c P(5 ≤ X ≤ 7) = 0.525 d P(8 < X ≤ 11) = 0.326

3 a p = 0.4 b P(3 ≤ X ≤ 5) = 0.503

4 a X ~ NB 2
1

4
,⎛

⎝
⎜ b

3

32
c

47

128

5 a 0.313 b 0.0473

6 a 0.264

b 0.999999 ≈ 1, so it is almost certain that he will not 

need to interview more than a dozen students.

7 a 0.0829 b 0.589

Exercise E
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3 a P(X = 0) = 
2

3
b P(X ≤ 1) = 

8

9

c P(X ≥ 3) = 
1

27
d

1

3
k

4 a E(X ) = p, Var(X ) = p(1− p)[= pq]

b E(X ) = 
r

p
, Var(X ) = 2

rq

p

5 Question 1 Question 2

E(X ) = 2, Var(X ) = 1 E(X ) = 6, Var(X ) = 30

Question 3

E(X ) = 
1

2
, Var(X ) = 

3

4

6 a P(X = 1) = 
4

7
b G (t) = 

4 2

7

2

2

t t

t

+

c The expected number of  shots is 2.

d The maximum number of  shots is 5.

Exercise F

1 a G
X + Y

(t) = 
2 7 3

12

2
2

+ +⎛

⎝
⎜

⎞

⎠
⎟

t t

b P(X + Y ≤ 1) = 
2

9
c E(X + Y ) = 

13

6

2 a G
X +Y

(t) = 
t

t t

2

2

3

6 7 2− +

⎛

⎝
⎜

⎞

⎠
⎟

b E(X + Y ) = 15 c Var(X + Y ) = 24

3 a G
X
(t) = e0.25(t−1), G

Y
(t) = e0.15(t−1), G

Z
(t) = e0.05(t−1)

b 0.989

4
pt

qt

r

1

⎛

⎝
⎜

⎠
⎟

Review exercise 

1 a P(1 ≤ X ≤ 4) = 
624

625
b P(X ≥ 2) = 

1

25

c E(X ) =
5

4
d Var(X ) =

5

16

2 a G
X
(t) = e0.6(t –1), G

Y
(t) = e0.12(t −1), G

Z
(t) = e0.28(t –1)

b 1 c 0.264

3 a i 0.0117 ii 0.105 iii 0.0625 iv 0.922

b Eight

4 a a = 2 b f

x
x z

( )x =
≤ ≤⎧

⎨
⎪

⎩⎪
2

0

0 otherwise

c 2

5 b E(X ) = a

Chapter 
Skills check

1 a P(X = 2) = 0.311 b P(1 ≤ X ≤ 3) = 0.786

2 a
1
 = −

1

2
, a

2
 = −

1

3
, a

3
 = 2

Exercise A

1 a E(3X ) = 15.9, Var(3X ) = 10.8

b E(X + 3) = 8.3, Var(X + 3) = 1.2

c E(4X + 1) = 22.2, Var(4X + 1) = 19.6

d E(2X − 5) = 5.6, Var(2X − 5) = 4.8

e E(kX + p) = 5.3k + p, Var(kX + p) = 1.2k2

2 a E(3X + 2) = 14 b Var(3X − 2) = 21.6

3 E(2Y − 1) = 2, Var(2Y − 1) = 3

4 a E(3 − 2Y ) = 1 b Var(3 − 2Y ) = 8

5 a E(2X − 3) = 45 b Var(2X − 11) = 192

6 Var(5X + 3) = 90

7 E(3X + 2) = 2 6 + 2, Var(3X + 2) = 3

Exercise B

1 a E(X + Y ) = 2, Var(X + Y ) = 1.9

b E(2Y −Z ) = 22, Var(2Y − Z ) = 8.4

c E(2Z −7X ) = 3, Var(2Z − 7X ) = 35.7

d E(X −Y + Z ) = 20, Var(X −Y + Z ) = 4.7

e E(X +Y − Z ) = 14, Var(X +Y − Z ) = 4.7

f E(3Z − 2X + 4Y ) = 10

Var(3Z − 2X + 4Y ) = 49.6

2 a E(3X + 5Y ) = 31 b Var(11Y − 7X ) = 703

3 Var(2X − 3Y ) = 72  72p

4 Var(X − Y ) = 
20

p
 20

Exercise C

1 a X = x 0 

P{X = x}
1

2

1

2

E(X ) = 
1

2
, Var(X ) = 

1

4

b Since we have 6 independent ips of  the same 

coin, we add six instances of  the variable X

c E(Y ) = 3, Var(Y ) = 
3

2
d y ∈ [ 0.67, 6.67]

2 a X = x 0 

P{X = x}
2

3

1

3

E(X ) = 
1

3
, Var(X ) = 

2

9

b Since we have 4 independent rolls of  the same 

die, we add four instances of  the variable X

c E(Y ) = 
4

3
, Var(Y ) = 

8

9

3 a E(X + X + X ) = 9, Var(X + X + X ) = 12

b E(3X ) = 9, Var(3X ) = 36

c Var(X + X + X + 3X ) = 48

Var(6X ) = 144

4 a E(X + X + X + X + X ) = 10

Var(X + X + X + X + X ) = 5

b E(Y + Y + Y ) = 15 Var(Y + Y + Y ) = 9

c E(X + X + X + X + X + Y + Y + Y ) = 25

Var(X + X + X + X + X + Y + Y + Y ) = 14

5 a X = x
i

 2 3 4

P{X = x
i
}

1

4

1

4

1

4

1

4

E(X ) = 
5

2

Y = y
i

 2 3

P{ Y = y
i
}

1

2

1

3

1

6

E(Y ) = 
5

3

r
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b Z = z
i

 2 3 4 6 8 9 2

P{Z = z
i
}

1

8

5

24

1

6

5

24

1

8

1

12

1

24

1

24

E(Z ) = 
25

6

6 µ = 2

Exercise D

1 a P(Y − Z −W < 0) = 0.5

b P(X + Y + Z + W > 0) = 0.892

c P(3X + Y > Z + W ) = 0.5

d P(X − 3Z ≤ 2Y + W ) = 0.671

e P(X − 4Z ≤ 3X − 2Z ) = 0.303

f P(W −Y ≤ 2Y + 3W ) = 0.994

2 a 0.551 b 0.162

3 a 0.159 b 0.201 c 0.564

4 a 0.0186 b 0.0000155 c 0.149

d 0.118

Exercise E

1 a P(1 ≤ X  ≤ 3) = 0.777 

b P(2 ≤ X  ≤ 8) = 0.992 c P( X  ≥ 0.8) = 0.639

2 0.053

3 a P(X ≥ 37) = 0.228

b P(X + X + X + X + X > 180) = 0.355

4 a P(X  ≤ 70) = 0.920 b P(T ≤ 800) = 0.782

Exercise F

1 a P(1.5 ≤ X  ≤ 2.5) = 0.639

b P(1.25 ≤ X  ≤ 1.35) = 0.923

c P(X ≥ 0.48) = 0.421

d P(X < 397) = 0.0353

e P( 1

2
 < X  < 

1

2
) = 0.0983

f P(1.8 < X  < 2.2) = 0.280

2 0.834

3 a 0.193 b 0.00469 c 0.917

4 a 0.579 b 62

Review exercise

1 0.796

2 b P(X ≥ 6) = 0.384 c P(X + Y < 5) = 0.173

d E(Z ) = 7

Var(Z ) = 77

e The random variable Z has no Poisson 

distribution since 7 = E(Z ) ≠ Var(Z ) = 77

3 a 0.00621 b 0.0787

c N(720, 202 + 122) = N(720, (4 34 )
2
)

d 0.299

4 a 20 or 47 b 16

5 a 0.377 b 0.196 c 45

Chapter 
Skills check

1 x  = 3.62, σ2 = 2.82

2 a P(X = 5) = 0.03125 b P(3 ≤ X < 8) = 0.322

3 a P(Y = 0) = 0.670 b P(3 ≤ X < 8) = 0.569

Exercise A

1 a x  = 11, s2 = 33 b x  = 29.75, s2 = 25.3

c x  = 67, s2 = 1518

2 x  = 0.65, s2 = 0.864

3 a x  = 33.7 b s2 = 23.8

Exercise B

1 a [4.19, 5.81] b [ 12.8, 9.20]

c [2819, 2889]

2 a [3.90, 6.10] b [0.104, 0.167]

c [320, 325]

3 n = 30

4 [72.3g, 77.2g]

5 a x  = 15.8 b n = 10

Investigation

a i [95.0, 105.0] ii [96.9, 103.1]

iii [97.8, 102.2] iv [98.7, 101.3]

b At the same signicance level, the larger the sample 

size we take, the narrower the condence interval 

we get.

Exercise C

1 a [14.45, 15.55] b [ 25.81, 20.19]

c [3430, 3526]

2 a [1.94, 8.06] b [0.112, 0.159]

c [319.6, 324.9]

3 a [67.6 g, 82.5 g]

4 a x  = 13.35 b The condence level is 90%.

5 a [483.4, 588.6] b [463.0, 609.0]

c For the same set of  data, the higher the signicant 

level the wider the condence interval we get.

Exercise D

1 a [ 2.18, 1.98] b [ 13.73, 7.44]

c [ 0.0609, 0.0859]

2 a d
i
 = Bob−Rick 3 −8 −3 9 6 −9 3 2 −4 −3 3 −7 

b [−4.27, 4.60]

Exercise E

1 a Since the p-value is 0.000008 < 0.1 we reject the 

null hypothesis at the 10% signicance level.

b Since the p-value is 0.095581 > 0.05 we have no 

sucient evidence to reject the null hypothesis at 

the 5% signicance level.

c Since the p-value is 0.010566 > 0.01 we have no 

sucient evidence to reject the null hypothesis 

at the 1% signicance level.
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2 a Since the p-value is 0.131776 > 0.1 we have 

no sucient evidence to reject the null 

hypothesis at the 10% signicance level.

b Since the p-value is 0.029673 > 0.01 we 

have no sucient evidence to reject the null 

hypothesis at the 1% signicance level.

c Since the p-value is 0.005283 < 0.01 we reject 

the null hypothesis at the 1% signicance level.

3 a Since the p-value is 0.036819 < 0.05 we reject 

the null hypothesis at the 5% signicance level.

b Since the p-value is 0.109391 > 0.1 we have no 

sucient evidence to reject the null hypothesis 

at the 10% signicance level.

c Since the p-value is 0.000153 < 0.01 we reject 

the null hypothesis at the 1% signicance level.

4 a H
0
: “The mean weight is 26g.” (µ = 26)

H
1
: “The mean weight is not 26g.” (µ ≠ 26)

b Use the z-test. Since the p-value is 0.00001 

< 0.01 we reject the null hypothesis at the 

1% signicance level and conclude that the 

harvested snails are not from the population.

5 a H
0
: “The mean level of  fat in the drink is 

1.4g.” (µ = 1.4)

H
1
: “The mean level of  fat in the drink is 

more than 1.4 g.” (µ > 1.4)

b Use the z-test. Since the p-value is 0.335687 > 

0.05 we have no sucient evidence to reject the 

null hypothesis at the 5% signicance level and 

conclude that the company claim is correct.

6 a H
0
: “The mean volume of  juice in the bottle 

is 300 ml.” (µ = 300)

H
1
: “The mean volume of  juice in the bottle 

is less than 300 ml.” (µ < 300)

b Use the z-test. Since the p-value is 0.004612 

< 0.1 we reject the null hypothesis at the 10% 

signicance level and conclude that the bottles 

contain less volume than stated.

Exercise F

1 a Since the p-value 0.6382 > 0.05 we have no 

sucient evidence to reject the null hypothesis 

at the 5% signicance level. 

b Since the p-value 0.10858 > 0.1 we have no 

sucient evidence to reject the null hypothesis 

at the 10% signicance level.

c Since the p-value 0.013122 > 0.01 we have no 

sucient evidence to reject the null hypothesis 

at the 1% signicance level.

2 a Since the p-value 0.027947 < 0.05 we reject the 

null hypothesis at the 5% signicance level.

b Since the p-value 0.007494 < 0.01 we reject the 

null hypothesis at the 1% signicance level.

c Since the p-value 0.225675 > 0.1 we have no 

sucient evidence to reject the null hypothesis 

at the 10% signicance level.

3 a Since the p-value 0.743755 > 0.1 we have no 

sucient evidence to reject the null hypothesis 

at the 10% signicance level.

b Since the p-value is 0.004763 < 0.05 we reject 

the null hypothesis at the 5% signicance level.

c Since the p-value 0.115078 > 0.01 we have no 

sucient evidence to reject the null hypothesis 

at the 1% signicance level.

4 H
0
: “The mean volume is 120ml.” (µ = 120)

H
1
: “The mean volume is not 120ml.” (µ ≠ 120)

Since the p-value 0.283654 > 0.01 we have no 

sucient evidence to reject the null hypothesis at the 

1% signicance level and conclude that the factory 

advertised a correct volume of  a particular ice-cream 

product.

5 H
0
: “The mean life expectancy is 30,000 hours.” 

(µ = 30,000)

H
1
: “The mean life expectancy is less than 30,000 

hours.” (µ < 30,000)

Since the p-value 0.094543 < 0.1 we reject the null 

hypothesis at the 10% signicance level and conclude 

that the manufacturer claims a longer life expectancy 

of  the LED lamps.

Exercise G

1 H
0
: “There is no dierence in nishing times.” (µ

d
 = 0)

H
1
: “There is a dierence in nishing times.” (µ

d
 ≠ 0) 

Use the t-test. Since the p-value 0.874063 > 0.05 we 

have no sucient evidence to reject the null hypothesis 

at the 5% signicance level and conclude that there 

is no dierence in nishing times on the two Rubik’s 

Cubes. 

2 H
0
: “There is no dierence in the scores.” (µ

d
 = 0)

H
1
: “There is a dierence in the scores.” (µ

d
 ≠ 0)

Use the t-test. Since the p-value 0.085622 < 0.1 

we reject the null hypothesis at the 10% signicance 

level and conclude that players score a better result 

when using the new type of  dart.

3 H
0
: “There is no dierence in the weights.” (µ

d
 = 0)

H
1
: “Students who join the programme drop some 

weight.”(µ
d
 > 0)

Use the t-test. Since the p-value 0.121576 > 0.05 we 

have no sucient evidence to reject the null hypothesis 

at the 5% signicance level and conclude that there is 

no dierence in weight before and after the programme.

Exercise H

1 a 0.0455 b 0.773

2 a E(X ) = 25; α = 0.00130 b 0.978

3 a 0.133 b 0.972

Review exercise

1 a [602, 702] b [586, 718]

c We notice that a higher signicance level 

means a wider condence interval.
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2 a Dierence 2 9 6 8 5 4 5 8 7 5 

b H
0
: “There is no dierence in potassium 

levels.” (µ
d
 = 0)

H
1
: “There is a dierence in potassium 

levels.” (µ
d
 ≠ 0)

Since the p-value 0.46297 > 0.01 we have no 

sucient evidence to reject the null hypothesis 

at the 1% signicance level and we conclude 

that there is no dierence in measurement of  

the two types of  biochemical analyzers.

3 a x  = 5.33 s2 = 4.38

b [3.72, 6.94]

c In 99% of  the cases, the mean value of  a 

sample of  15 observations taken from the 

population will fall within the condence 

interval [3.72, 6.94].

4 a x  = 51.2 b 95%

5 a 30 s b x  = 30.97 s2 = 0.298

c H
0
: “The average time is 30s.” (µ = 30)

H
1
: “The average time is more than 30s.” 

(µ > 30)

d We use t-test since the standard deviation is 

unknown.

Since the p-value 0.000163 < 0.05 we reject 

the null hypothesis and conclude that the 

average time is more than 30s, therefore the 

company sets up the speedometers to show a 

higher speed.

6 a x  = 210

b n = 15.37, thus the sample size should be 16.

7 a i x  = 23.5 ii s = 10.5

b i [21.8, 25.2] ii [22.0, 24.9]

c [22.0, 24.9] ⊂ [21.8, 25.2], so a 90% 

condence interval is a subset of  a 95% 

condence interval.

8 a i ]–∞, 9.19[ ii ]–∞, 8.96[

b i 0.569 ii 0.705

c When the probability of  a Type I error 

decreases from 10% to 5%, the probability of  

a Type II error increases from 0.569 to 0.705.

Chapter 
Skills check

1 a 2E(Z ) – 3E(Y ) + 2E(X )

b 4Var(Z ) – 9Var(Y ) + 4Var(X )

c E(X )E(Y )E(Z )

2 a x  = 43.5, y  = –31.75, 

Var(X ) = 46.25, Var(Y ) = 98.69

3 a 0.382 b 0.951 c 0.938 d 0.732

Exercise A

1 r = –0.382; there is a weak negative correlation

2 r = 0.794; there is a strong positive correlation

3 r = –0.970; there is a strong negative correlation

Exercise C

1 p = 0.00229. Since p < 0.01, we reject the null 

hypothesis. There is evidence of  signicant 

correlation between the two variables at the 

1% level.

2 p = 0.394. Since p > 0.05, there is not enough 

evidence to reject the null hypothesis, i.e. there 

is not evidence of  signicant correlation between 

the two variables at the 5% level.

3 p = 0.0343. Since p < 0.1, we reject the null 

hypothesis. There is evidence of  signicant 

correlation between the two variables at the 

10% level.

Exercise D

1 a Use W, because it has the strongest correlation, 

r = –0.546

b S = –1.07W + 114

c p = 0.102. Since p > 0.05, there is no evidence 

to reject the null hypothesis, i.e. there is not 

evidence of  signicant correlation between 

the two variables at the 5% level.

2 r = 0.756; y = 1.91x + 82.8; 150mg

3 a H
0
: ρ = 0; H

1
: ρ ≠ 0

b r = 0.962; p = 0.000008

c There is very strong evidence to indicate 

a positive association between the random 

variables X and Y

d y = 0.623x + 10.8; y is approximately 97.

4 x = 0.6y + 12.4; 66.4 grams

5 a Y on X: y = 2.48x + 1.17; 

b X on Y : x = 0.380y – 29.6

Review exercise

1 a r = 0.975, p = 0.000039; p < 0.05, hence there 

is sucient evidence of  a strong positive 

relationship between the two random variables.

b 75.8°C

2 10.2

3 r = 0.299

4 a 1

2
, no b 0, no

5 a r = 0.991; p = 2.78x10–8

b The p-value suggests a strong relationship 

between the two random variables; 

y = 0.905x + 2.59

c 20

d p = 0.00620; p < 0.01, hence there is a strong 

correlation between the random variables.

6 d r = 0.383
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Index

A

actuarial science 5

alternative hypotheses 100–1

B

Bernoulli distribution 26, 38

Bernoulli trials 12, 13, 21, 23

Bernoulli, Jacob 13

Bessel, Friedrich 68

binomial distribution 26, 29, 38

bivariate distributions 122, 123–4, 

154–5

bivariate normal 

distribution 138–9

correlation 124–8

correlation and causation 128–30

covariance 135–6

hypothesis testing 138–9

linear regression 141–50

properties of  covariance 136–7

review exercise 152–3, 162

sampling distributions 130–4

t-statistic for dependence of   

X and Y 139–40

Bravais, Auguste 133

C

Cauchy, Augustin 68

Central Limit Theorem 41, 68–72, 

77

condence intervals for the 

mean 84, 91

Theorem 71

website 71

Chebyshev, Pafnuty 68

claims 100

condence intervals for the 

mean 84–5

condence interval for matched 

pairs 97–9, 120

condence interval for μ when  

σ is known 85–9, 120

condence interval for μ when  

σ is unknown 90–5, 120

investigation 90

condence value 85

continuous random variables 3, 6

correlation 124–8

correlation and causation 128–30

correlation coecient 126–7, 

133–4

negative correlation 125–6

no correlation 126

positive correlation 124–5

sample linear correlation 

coecient 128, 154

weak and strong correlation 128, 

131

covariance 135–6

denition 136, 154

properties of  covariance 136–7, 

155

critical value 101

cumulative distributive function 5, 

38

discrete and continuous 

quantities 5–6

D

D’Alembert, Jean 25

Darwin, Charles 85

de Moivre, Abraham 5, 37, 68

degree of  freedom 90

Dirichlet, Gustav 68

discrete random variables 2, 5–6

Dodson, James 5

E

empirical rule 67

Equitable Life 5

estimates 80, 120

estimators 79, 120

denitions 80, 81

estimators and estimates 80–1

unbiased estimators for the mean 

and variance of  a normal 

random variable 81

well-dened denitions 82–3

expectation algebra 42, 76

linear combination of  

independent normal random 

variables 58–63

linear transformation of  a single 

variable 42–6

linear transformation of  two or 

more variables 47–57

review exercises 74–5, 159

sampling distribution of  the 

mean 64–7

F

Fisher, Sir Ronald Aylmer 85, 87

G

geometric distribution 12–13, 27, 

38

expected value and variance 

of  geometric random 

variables 18–20, 38

Investigation  18

negative binomial 

distribution 20–3

geometric random variables 18

Gosset, William Sealy 91

H

Halley, Edmund 5

hypothesis testing 100–1, 120

bivariate normal 

distribution 138–9

four steps in hypothesis 

testing 101, 120

hypothesis testing for μ when  

σ is known 101–4, 120

hypothesis testing for μ when  

σ is unknown 105–8, 120

signicance testing for matched 

pairs 109–11, 121

I

independent normal random 

variables 58–63, 76

independent random variables 32, 

39, 76

L

Laplace, Pierre-Simon 68

Law of  Large Numbers 41

level of  signicance 85, 101

Lévy, Maurice 68

Lindeberg, Jarl Waldemar 68

linear combination of  independent 

normal random variables 58

linear regression 141–4, 148

linear transformation of  a single 

variable 42–4, 76

linear transformation of  two or 

more variables 47–50, 76

Ludo 12–16

Lyapunov, Aleksandr 68

M

Maclaurin’s formula 27

Markov, Andrei Andreyevitch 68
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matched pairs 97

signicance testing for matched 

pairs 109–11, 121

moment 50

N

negative binomial distribution

20–2, 27, 38

Neyman, Jerzy 87

normal random variables 81

null hypotheses 100–1

failure to reject 101

Type I and Type II errors 112, 

121

O

one-tail tests (upper and 

lower) 100, 120, 121

normal distribution graph for a 

one-tail test 115

P

p-value 101

Pascal, Blaise 20

Pascal’s distribution 20

Pearson, Karl 87, 133

percentile curves 72

Poisson distribution 27, 29, 38

random variables 53–4

Poisson, Denis 68

Pólya, George 20, 68

Pólya’s distribution 20

population 64–5, 77, 79

population parameters 100

sample size 73

probability 4, 5, 38–9

cumulative distribution 

function 5–12

geometric distribution 12–24

probability generating 

functions 25–35

review exercise 36–7, 157

probability generating functions 25, 

38

properties 39

sum of  independent 

variables 32–4

Q

qualitative and quantitative data 5

R

random samples 64–5

random variables 40–1

estimators 80–1

Poisson distribution 53–4

regression analysis 41, 141–50

S

sampling distribution of  the 

mean 64–5, 76

sampling distributions 130–4

sample product moment 

correlation coecient 

R 130–1, 154

signicance levels 85, 101

skills checks

expectation algebra 40, 157

probability distributions 2–3,

156

statistical analysis methods 78, 

159

statistical modeling 122, 161

standard error 65, 76

statistical analysis methods 78, 

120–1

condence intervals for the 

mean 84–99

estimators and estimates 80–1

hypothesis testing 100–11

making sense of  data 79

review exercise 117–19, 161

Type I and Type II errors

112–16

unbiased estimators for the mean 

and variance of a normal 

random variable 81

well-dened denitions 82–3

sum of  independent variables

32–4

T

t-distribution 91–3

t-statistics 101

t-statistic for dependence of  X 

and Y 139–40

trac analysis 35

two-tail tests 100, 120, 121

normal distribution graph for a 

two-tail test 116

Type I and Type II errors 112, 121

medical research 112

normal distribution graph for  

a one-tail test 115

normal distribution graph for  

a two-tail test 116

V

values 80

condence value 85

critical value 101

p-value 101

von Mises, Richard Edler 68

Z

z-distribution 92

z-statistics 101
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